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Executive summary

In this deliverable we finalize the on-device verification techniques introduced in the
deliverable D6.3 [11] and devoted to the enforcement of the “secure extensibility” property
of the HOMES use case and the “information protection by flow control” property of POPS
use case. Four different techniques are presented: direct control flow, transitive control
flow, global policy and non-interference. In the deliverable D6.3 only incremental types of
updates were considered (application installation, weakening security policies) in these
models, while in this deliverable we introduce algorithms for decremental types of updates
(application removal, restricting security policies, etc.).

With the direct control flow verification technique we have presented Security-by-
Contract framework for smart cards. We provided specification of the PolicyChecker com-
ponent for incremental types of updates and discussed how the framework can be in-
tegrated with the Java Card system. In the Chapter 2 of the current deliverable we fi-
nalize the introduction of the Security-by-Contract framework with specifications of the
ClaimChecker and the ConflictResolution components, and specification of the PolicyChecker
component for the decremental types of changes.

Transitive control flow verification technique aims to capture illicit invocations of ap-
plication methods especially in case of applications collusion. In the Chapter 3 of this
deliverable we finalize this technique by the description of several solutions for dealing
with decremental updates, each solution having a different trade-off between computa-
tion overhead and additional system memory required.

Global policy verification technique aims to detect forbidden sequences of methods
calls at the system level, i.e. not necessarily only within one or two applications. This
approach is inspired from proof-carrying-code (PCC) paradigm: static bytecode analysis
conducted off-device generates proofs annotations embedded in the bytecode for easier
on-device verification. In the Chapter 4 of this deliverable we describe how to deal effi-
ciently with decremental changes on-device with this model, mainly application removal
because updates of the security policy (sets of forbidden sequences of method calls) have
an impact on already loaded code stronger than expected and thus requires additional
off-device computations but also on-device verifications.

Non-interference verification technique is also a PCC-like approach but whose goal
is to detect illicit flows of data between applications clustered in domains. Even if the
domain abstraction is strongly inspired from the GlobalPlatform environment, it is generic
enough to be applied to any Java-based system. In the Chapter 4 of this deliverable we
describe how to efficiently deal with decremental changes on-device with this model.

All the aforementioned techniques support security policy updates. If a system secu-
rity policy is updated the incremental on-device verification procedures will ensure that
all the applications are compliant with new policy. Two approaches are sketched in case
some of installed applications are not compliant with new policy. Either the policy update
is rejected or the applications conflicting with new policy are made non-selectable.

Depending on the system requirements and stakeholders’ needs it is possible to
choose the most suitable verification technique. The work remaining for the last year of
the project is the implementation of core algorithms for one of the SecureChange project
case studies (POPS or HOMES).
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WP6 integration with other work packages

The Figure 1 reports the whole integration process between work packages across case
studies of the project. The content of each integration link on this graph is the description
of the relation between artifacts produced by each work package involved instantiated on
the labeled case study. The WP6 is involved in two integration links on the POPS case
study with WP4 and WP7.

POPS

HOMES

POPS
ATM

ATM

ATM ATM

POPS

POPS
WP7

WP3

WP6

WP4WP2

WP5

Figure 1: Integration of work packages across case studies.

Integration with WP4

The content of the integration with WP4 on POPS case study is included in the Chapter 4
of the deliverable D4.2. The main idea of the collaboration with WP4 is to verify the same
properties at the model level using WP4 techniques and at the code level using WP6
techniques to establish a coherency between (high-level) modeling of applications and
their (low-level) implementations.

Since WP4 and WP6 have independently worked on different properties from the
beginning of the project, we choose to focus on information protection related properties,
and more precisely on three of the four models previously developed by the WP6 (see
the deliverable D6.3): the two control flow models and the non-interference model. For
each of these models integration has been achieved by the establishment of new specific
UMLsec stereotypes. For each WP6 model/WP4 stereotype, we rely on the same input,
that is the security policy to be enforced. Furthermore, modifications on the model and
the code are both dealt in incremental/decremental way to avoid full re-verification of the
model and/or the code.

In addition to verify the same properties at different levels, a coherency report is es-
tablished between UML models and the code analyzed. Actually, upon successful veri-
fication at the model level, some information is extracted from UML to permit additional
verifications on the code and thus detect potential incoherencies between application(s)
design and implementation.

Integration with WP7

The content of integration link between Verification (WP6) and Testing (WP7) work pack-
ages is provided in the Chapter 6 of the current deliverable. The main contribution of
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collaboration between these work packages is stronger security guarantees for the infor-
mation protection security property of the POPS case study.

Both WP6 and WP7 work on the information protection property of the POPS case
study. This requirement demands that assets (application data and specific services of
security domains) of each stakeholder should be protected from unauthorized access.
WP6 (on-device verification) provides techniques to ensure absence of illegal access to
information data. WP7 is interested in the access to security domains services. It veri-
fies by testing absence of possibility to misuse application installation and re-association
processes, which grant direct access to security domains services.

In terms of integration we discussed threats for the information protection property and
demonstrated that collaboration of two work packages provides protection against these
threats. One of the main advantages of the collaboration is possibility for WP6 to rely on
some assumptions about the installation process, because WP7 is testing correctness of
these assumptions. Another benefit is possibility to ensure absence of illegal transitive
access to the security domains services, which can be verified by the techniques of WP6.
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1. Introduction

Various techniques for loading-time verification on small and memory-constrained de-
vices were presented in the deliverable D6.3 [11]. The main goal of these techniques
is to verify absence of illicit information flow paths between applications. As we assume
significant constraints on auxiliary memory and computation time, the techniques need
to be incremental and highly optimized.

The current deliverable finalizes the formal models and algorithms for verification pro-
cess and is an intermediate step between them and implementation. Thus we present the
formal models in a connection with real devices, for example, Java Card and GlobalPlat-
form smart cards. As the WP6 (on-device) techniques will be validated on the POPS and
HOMES case studies [5], the natural choice is Java as an underlayer in each model. As
standard Java is a well-known language we do not provide a lot of details and refer an
interested reader, first of all, to the official documentation [16].

POPS case study presents a multi-application smart card which is based on Java Card
and GlobalPlatform specifications. As Java Card has not quite the same conceptions as
Java, we provide in this chapter more details about Java Card and GlobalPlatform.

HOMES case study is based on the OSGi technology [2]. As on the moment of writing
this deliverable the HOMES code and detailed specification were not available, we cannot
provide applicability study yet.

1.1 Java Card and GlobalPlatform

In this section we detail some properties of Java Card and GlobalPlatform used later in
this deliverable and not described in the Chapter 1 of the deliverable D6.3.

1.1.1 Java Card Application Communications

Java Card firewall protects methods and data of one application to be accessed from
other packages [14, sec.6]. Specific means for applications to communicate are provided
by shared interfaces. These interfaces, in order to be accessible, necessarily extend
interface Shareable. In the remainder we will sometimes call such shared interfaces
Shareable interfaces.

Application services are methods of such shared interfaces. Applications that provide
services are called servers and applications invoking services are called clients. The
main property of services is possibility to invoke them from contexts different from the
server context (we refer an interested reader to [14, sec.6] for details of sharing mecha-
nism and contexts).
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One of our main interests is to verify absence of (direct and transitive) illegal services
invocation. Currently on Java Card access control to services is enforced in the applica-
tion code. Such a run-time check can be substituted by a loading-time verification.

1.1.2 Java Card Bytecode Details

The Java Card bytecode (JC bytecode) that is sent to the card in the CAP files differs
from the standard Java bytecode in the class files [15, sec.4]. In order to optimize the
work of the bytecode verifier and the JCVM, JC bytecode is compressed by using to-
kens instead of Unicode strings. Because of this tokenization in the JC bytecode we see
superInterfaces 1.2 rather than superInterfaces
javacard/framework/Shareable. Consequently, the verification mechanism work-
ing on a bytecode needs to be able to connect tokens with the actual interfaces, methods
and classes. This process, which is called token-based linking, is actually performed by
the installer during application installation and linking process.

Token-based linking is performed by JCRE using CAP files and export files. Export
files provide a specification of public APIs of the CAP file. Thus the export file should
include information about all shared interfaces declared by the application. When a pack-
age is loaded on the card not only its own CAP files and export file are being sent, but
also export files of all the packages it refers to (including javacard/framework). It is
done in order to ease the linking process. We note that export files contain also actual
names of the shared interfaces and their services. Thus service name for us can be
represented as actual name of the method (a string). On Java Card it is more practical
though to use bytearrays as service names, using encoding similar to AID (details about
application identifiers can be found in [11] or [9]).

1.1.3 Security Domains on GlobalPlatform

GlobalPlatform (GP) is a specification for secure card content management [12]. It orga-
nizes card contents and provides to application providers secure means for management
of their data. Each application provider (and the card issuer) normally have (at least one)
security domain, which is a privileged application that manages other applications’ data
and provides secure connections between applications and their provider authenticated
off-card.

Security domains normally are not valuable for the card holder, but they ease life of
the application owners, as they provide specific services to the associated applications.
For Java Card and GlobalPlatform smart cards these services are described in the GP
specification [12, App. A]. Specifically, a security domain on such a card usually imple-
ments SecureChannel or SecureChannelX interface, which declare a well-defined set
of communication-assisting methods. We will call such methods GP-specific services of
a security domain.

1.1.4 GlobalPlatform Privileges

One of the advantages of GP is hierarchical organization of the card. The card issuer is
the main stakeholder on GP card and she can manage any data on the card through the
Issuer’s Security Domain (ISD). Application providers are less privileged, but they also
can have some capabilities to manage applications on the card.
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The following privileges are required in order to modify the content of the card [12,
sec.6.6]:

• Delegated Management – enables a security domain with a capability of delegated
card content management.

• Authorized Management – enables a security domain with a capability of card con-
tent management.

• Global Delete – enables a security domain with a capability to delete any card
content.

• Global Lock – enables a security domain with a capability to lock and unlock any
application.

Delegated Management and Authorized Management privileges allow owner of a secu-
rity domain with these privileges to manage the card contents (including deletion of ex-
ecutable files of other security domains). Delegated Management and Authorized Man-
agement are mutually exclusive privileges. Other privileges can be assigned indepen-
dently and one security domain can have multiple privileges. Normally the privileges are
assigned to the security domains (and not simple applications).

There are other privileges that also can be considered:

• Card Lock – enables an application or a security domain with a capability to lock
the card

• Card Terminate – enables an application or a security domain with the privilege to
terminate the card

After removal of some privileged entity its privileges are assigned to the issuer’s se-
curity domain. We note that security domains themselves are distinguished from applica-
tions by a specific Security Domain privilege.

1.1.5 Security Domains Hierarchy

An application (and security domain) are always associated explicitly with some security
domain [12, sec.7.2]. Implicitly each application is associated with all the domains higher
in the hierarchy.

Security domains hierarchy on the card is a forest. Roots are security domains asso-
ciated with themselves. Issuer’s security domain is always a root.

Extradition is the means by which an application (or security domain) can be associ-
ated with a security domain different from the one it was installed into. Security domains
and applications can be extradited during installation or subsequently.

1.2 Expected techniques properties from DoW

Some properties are expected to be featured by WP6 (on-device) techniques, as those
already given in the Section 1.4 of the deliverable D6.3 [11]. It is important to clarify that
the main originality of the techniques we propose in this work package is not related to
the originality of enforced properties (absence of some control flow paths, absence of
forbidden sequences of method calls, or absence of undesired information flows), but is
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about providing practicable and efficient on-device algorithms for verifying such properties
directly on constrained devices, such as smart cards (POPS case study).

The four models we presented in the deliverable D6.3 have been especially designed
to fit the requirements of constrained devices in case of installation of new applications.
In this deliverable we focus on other kinds of changes in these models: removal of an
application and modification of the security policy. Once more, our goal is not only to per-
mit such changes, but to provide practicable and efficient on-device algorithms. Since we
investigate incremental/decremental techniques to deal with changes in our models, we
have to formally analyze the impact of each kind of change in order to provide sufficient
guarantees that our incremental/decremental techniques achieve the same results as a
complete (re-)analysis of a system, and more precisely that the system systematically
evolves from a secure state to another secure state w.r.t. to the considered model.

The on-device verification processes we developed can be seen as a classifier that
assigns a category to each requested change, positive or negative: positive means “the
change breaks the security of the system” and negative means “the change does not
break the security of the system”. The category inferred by a verification process can
be wrong because of approximations introduced to make it more suitable for constrained
devices. The results of a verification process are thus splitted into four categories:

• true positives, set of changes rejected because they would break the security of the
system;

• true negatives, set of changes accepted because they do not break the security of
the system;

• false positives, set of changes rejected while they would not break the security of
the system;

• false negatives, set of changes accepted while they break the security of the sys-
tem.

Obviously, false negatives must be avoided. Existence of false negatives would clearly
denote a lack of caution in the design of the approach, so we have paid a special attention
to produce no false negatives. False positives do not break the security of the system,
but they denote a lack of sensitivity of the approach. Solutions creating false positives
should be avoided as much as possible for lifelong evolving systems because they can
bring the system to a state where no new application can be installed.
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2. Direct Control Flow

2.1 Introduction

Security-by-Contract (S×C) approach for smart cards was introduced in the deliverable
D6.3 [11]. The goal of the framework is to verify at loading time absence of unautho-
rized direct service (run-time) invocations. We have presented main idea behind loading-
time verification with S×C approach, introduced formal models of the smart card platform
and application contract and discussed two main components of the S×C framework (the
ClaimChecker and the PolicyChecker). The PolicyChecker specification was introduced for
incremental types of changes (installation of new application and incremental update of
already installed one). We also presented some results on validation of the S×C frame-
work, showing that if the ClaimChecker and the PolicyChecker are implemented correctly,
then smart card platform is secure (for introduced definition of secure platform).

In this deliverable we provide specification of the ClaimChecker and extension for spec-
ification of the PolicyChecker (for decremental types of changes). We also introduce new
component of the S×C framework: the ConflictResolution component. This component fi-
nalizes the S×C framework for smart cards. Further we will provide description and spec-
ification of this new component and show how security of the platform can be established
in the presence of it.

Conflict resolution is required for some cards where hierarchical organization of the
stakeholders enables more advanced reasoning about updates than always rejecting po-
tentially dangerous ones. The system should be kept secure under evolution, but in some
cases it is possible to accept update of more privileged stakeholder ensuring security by
making conflicting applications unselectable. Introduction of the ConflictResolution com-
ponent is one of the goals of the next deliverable (Deliverable 6.5, which is due on M36).
However we provide description of this component in the current deliverable because it
finalizes formal specification of the framework. We will also discuss some details of the
ConflictResolution implementation and point to problems related to it.

Two approaches may be chosen for implementation of the S×C framework: with and
without conflict resolution. The main goal of the framework is to keep the system secure
and both approaches ensure security across updates. Card vendors can choose an
approach that is more appealing to them and their customers.

Some definitions from the deliverable D6.3 [11] were updated in order to provide bet-
ter integration of two approaches (with and without the ConflictResolution component).
Because of that and also with a purpose to make the deliverable self-contained we will
reintroduce the main definitions.
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2.1.1 Preliminary Assumptions

In order to provide a formalization of smart card platform and direct control flow verifica-
tion process we adopted the following assumptions:

• We do not consider packages in the model. Packages are installed at one pass,
so we do not consider a possibility for some malicious applet to be installed in one
package with an honest one. Consequently we may assume that all applications in
the package belong to one provider. Inside a package applications can communi-
cate freely. But since our main goal is to verify security of applications communi-
cating across packages, we may just consider that each package represents one
application.

• Security domains are not applications in our model, but entities that provide specific
GP services to associated applications. If a security domain itself communicates
with other applications through (non-GP-specific) Shareable interfaces mechanism
it is necessary to add a corresponding application into the platform model. In fact,
security domains provide their GP-specific services (see chapter 1 for details) as
Shareable interfaces. But on GP level OPEN ensures that direct access to the
services of security domains is (always) granted to (only) associated applications.
There is a method GPSystem.getSecureChannel() that provides to an appli-
cation a handle to associated security domain. This is a requirement of GP speci-
fication [12]. Besides the SecureChannel() interface security domains normally
do not participate in the inter-application communication. We can ensure this dur-
ing the ClaimChecker run on the security domain installation. If an application has
a Security Domain privilege (more details are provided in the section 2.7.5), the
ClaimChecker needs to check that such application does not have invocations of
non-GP-specific services of other applications and all Shareable interfaces it pro-
vides extend SecureChannel.

• Security policy for inter-application communications is specified only for applica-
tions. Security domains are excluded from the security policies due to reasons
explained above.

• Obtaining a reference to an object is not an information leakage in our model, but
only forbidden service invocation is an information leakage. Though a granularity
of information sharing on Java Card is a Shareable interface object (which may
comprise several methods) we provide more fine-grained verification mechanism
that is based on service invocations.

• On GlobalPlatform an application can register as a Global service provider. The
Global services mechanism relies on Java Card level on Shareable interface mech-
anism, but there is a possibility to obtain a reference to a Global service object by
invoking a method GPSystem.getService(). In this case OPEN will obtain a
desired reference to the object and return it to the client. The assumption for Global
services is their availability to any application on the platform. Thus, if an applica-
tion registers a Global service, it authorizes every other applet on the card to call
this service. Since our goal is more fine-grained access control, we do not consider
Global services in the model.

• Applications from different stakeholders do not inherit from each other. Inheritance
assumes availability of the code during compilation and/or possibility of dynamic
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class loading. Though standard Java supports these requirements, on Java Card
situation is different. Java Card (current version 2.2 [14, 15, 13]) does not support
dynamic class loading. Java Card applications are highly secret and code shar-
ing is not expected. Though (partial) code sharing is necessary for the Shareable
services mechanism [9], but this is the only restriction.

• AID and service names are unique.

• Only security domains (and not simple applications) can provide on the platform
services of the SecureChannel and SecureChannelX interfaces from the Glob-
alPlatform specification [12, App. A: GP for Java Cards].

These assumptions restrict applicability of the model, as they tightly relate it with the
Java Card and GlobalPlatform smart cards. This trade-off is necessary due to limitations
of smart cards memory.

2.1.2 Stakeholders on the Card

We consider the following parties that together provide the card and its contents: card
vendor, card issuer and application providers. We do not consider a card holder as a
stakeholder.

Card vendor provides a chip with Java Card and GlobalPlatform libraries installed.
Consequently it is a card vendor who provides implementation of the Security-by-Contract
framework and incorporates the verification process into the loading mechanism. Card
vendor does not provide any specific security policy for the card.

Card issuer is the most privileged stakeholder on the card. Together with the card
vendor she decides which approach for the S×C framework to implement (with or without
the ConflictResolution component). Her security domain is able to manage any data on the
card. Card issuer can provide also her own applications (or other security domains) and
security policies regulating access to her services and specifying functionally necessary
services.

Application provider installs on the card her applications (and security domains) and
specifies related security policies. One platform can host several different application
providers. Application providers do not decide which verification process should be im-
plemented on the platform, but they may have business agreements with the card issuer
describing a level of security that should be guaranteed on the card.

Platform updates are triggered from outside the card by an entity authenticated at
the terminal [12]. We suppose that this entity is one of the application providers or the
card issuer. This assumption relies on cryptographic schemes (correctly) implemented by
the card and the terminal. GlobalPlatform specification [12] describes important require-
ments on authentication protocols and cryptography. Thus on a (correctly implemented)
smart card updates related to specific application could be requested only by the owners
of this application or by the card issuer. It is possible to restrict this requirement and
ensure only the application owner can update her application.

2.1.3 Application Update

Specifications of Java Card and GlobalPlatform do not define a convenient mechanism
for application updates except deleting an old version and installation of a new one in
a transactional fashion. We can propose flexible S×C-based approach for verification
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that is based on incremental certification of changes in the code. This approach can be
described as follows:

1. Application provider specifies incrementally what is changing in the code (in com-
parison with the old version);

2. The ClaimChecker verifies that this is specification is correct;

3. The PolicyChecker verifies incrementally that update is secure with respect to the
platform security policy P

2.2 Security-by-Contract Framework

Security-by-Contract framework consists of the following components: the ClaimChecker,
the PolicyChecker and the ConflictResolution.The ConflictResolution component is optional
and it is up to the card vendor and the card issuer to decide whether to implement it
of not. Verification without resolution of conflicts can be realized on Java Card without
GlobalPlatform.

2.2.1 Duties of the Components

Introduced components are parts of verification process. We have already discussed in
D6.3 [11] why the ClaimChecker and the PolicyChecker need to be integrated with the card
manager (JCRE on Java Card or OPEN on GlobalPlatform). These components (and
also the ConflictResolution component, as will be demonstrated further) require access to
installation process and some card manager capabilities. Thus we assume that OPEN
(or JCRE) orchestrates verification process.

Upon receiving an update request the card manager, among all, performs the next
actions:

• The card manager analyzes the update request and identifies which verification
steps should be taken.

• For installation of new application or an update of an existing application the card
manager requests the ClaimChecker to verify compliance of the application code and
its Contract.

• For installation, update or removal of an application the card manager requests the
PolicyChecker to verify if the platform will be secure after an update.

• If the PolicyChecker has rejected an update and the ConflictResolution component
is implemented, the card manager requests the ConflictResolution component to
evaluate the possibility of update.

• If the PolicyChecker approved the update or the ConflictResolution approved the up-
date the card manager performs the update.

• The card manager maintains platform data: security policy P, list of unselectable
applications 1.

1List of unselectable applications is introduced further.
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Duties of the ClaimChecker component

The ClaimChecker component is responsible for verification that the code of new (or up-
dated) application is compliant with its Contract, more specifically: with its Claim on pro-
vided and called services. The ClaimChecker can also evaluate if an application with de-
clared security domain privilege does not provide any services besides SecureChannel.
This component is specified in the section 2.6.

Duties of the PolicyChecker component

The PolicyChecker component verifies that after an update (installation, update or removal
of an applet) the evolved platform will be secure. In order to do this for new applet the
PolicyChecker checks if the application Contract is compliant with the platform security
policy P. For deletion of an applet the PolicyChecker verifies if after removal of an applet
the platform will be secure. This component was partially introduced in the deliverable
D6.3 [11, Chap.3]. Full specification of this component is provided in the section 2.5.

Duties of the ConflictResolution component

The ConflictResolution component evaluates a possibility of update reasoning on a hierar-
chy of applications. The main idea behind it is the hierarchical organization of the security
domains and capabilities that some security domains have on the card. On Java Card
all applications are treated as equal and no application can request deletion or locking
other applets. But on GlobalPlatform some applications (for example Issuer’s Security
Domain or applications with some specific privileges) have possibilities to manage files
and applications of other stakeholders. Thus, for example, a “powerful” security domain
can use GP commands and delete some applications that hinder its own update (in case
the PolicyChecker rejects an update).

Discussion on the security domains hierarchy and the ConflictResolution component
specification are provided further in the section 2.7.

2.3 Notations and Main Definitions

In the remainder of the chapter we will use the following notations:

• D – set of security domains on the card;

• ∆D – a domain of security domains names;

• A – set of applications installed on the card;

• ∆A – a domain of application names;

• S – set of services provided on the card;

• ∆S – a domain of service names;

We will usually denote applications already installed on the platform as A or Ai (ele-
ments ofA) and the application that is affected by a change (or new applet being installed)
as B. We use notation A.s for service s (identified by its name) of application A.
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2.3.1 Platform Specification

First we specify platform model for a simple workflow that does not consider conflicts.
This model was initially introduced in the deliverable D6.3 [11] so we do not discuss it a
lot in this deliverable.

Definition 2.3.1 (Platform) Platform Θ is a tuple 〈∆A,∆S ,A, shareable(), invoke(),
sec.rules(), func.rules()〉, where shareable(), invoke() : ∆A → ℘(∆S) are association func-
tions for the services on the platform; sec.rules() : ∆A × ∆S → ℘(∆A) and func.rules() :
∆A → ℘(∆S) define security policies of the applications.

The set of all services provided on the platform is denoted as S =
⋃

A∈A
shareableA.

For every application A ∈ A a function sec.rules(A, s) = sec.rulesA(s) is a mapping,
that defines for each service s of application A which other applications on the plat-
form are authorized to call it. We will sometimes use notations sec.rulesA(∅)=∆A and
sec.rulesA(S′)={Ak1 , . . . Akm}, where S′ ⊆ S and Ak1 , . . . Akm ∈ A.

Function func.rules(A) = func.rulesA specifies the set of services on the platform that A
needs in order to be functional.

2.3.2 Specification of Contract

The contract in the S×C approach is a specification of an application that describes for-
mally all its (security-related) behaviors.

Definition 2.3.2 (Contract) For application A its ContractA is a pair 〈ClaimA,AppPolicyA〉,
where

• ClaimA = 〈ProvidesA,CallsA〉, and ProvidesA,CallsA ∈ ℘(S);

• AppPolicyA = 〈sec.rulesA, func.rulesA〉, and sec.rulesA : S → ℘(A), func.rulesA ∈ ℘(S).

We assume dom(sec.rulesA) ⊆ ProvidesA and func.rulesA ⊆ CallsA.

ProvidesA is a declared set of services that application A has and CallsA is a declared set
of services of other applets that A calls. The security and functional rules are instantiated
in the AppPolicy of each application.

Definition 2.3.3 (Platform Security Policy) Security policy of the platform P consists of
the contracts of all the applications A on the platform:
P = {ContractA1 , . . .ContractAn}for ⋃

i=1..n
Ai =A

This definition of security policy does not include security domains. This is justified by
our assumption that security domains do not provide services (except the GP-specific
ones). Also such policy definition is justified by the business case, because the ap-
plication providers sometimes want to forbid any communications even for applications
associated with the same security domain.
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2.4 Specification of Possible Updates

Java Card and GlobalPlatform support only installation and removal of an application. But
an update of already installed application usually is performed in a transactional fashion
(because otherwise some other applications on the card can be broken or left in the
inconsistent state).

Below is the list of possible atomic updates (related to applications and specified as
changes in the Contract). Installation, removal and update of applications can be pre-
sented as a sequence of such atomic updates. We also discuss for each type of atomic
update if it can cause problems for other applications (lead to a conflict of interests).

Definition 2.4.1 (Atomic Application Updates) 1. Addition of a service s to ProvidesB.
It might happen that s ∈ CallsA for some application A ∈ A. In this case it is neces-
sary that corresponding authorization (s,A) is present in sec.rulesB. Otherwise it is
not secure to perform such update and the PolicyChecker will reject it. In this case
we may say that application A is preventing addition of new service of B.

2. Removal of a service s from ProvidesB. Some application A ∈ A may have this
service s in func.rulesA. Consequently, to keep some functionality available s cannot
be removed. We may say that application A prevents removal of a service of B.

3. Addition of a service A.s to CallsB. In this case the biggest concern is whether B is
authorized by A to call its service: (s,B) ∈ sec.rulesA. If it is not the case, update is
breaking policy of application A and cannot be performed.

4. Removal of a service s from CallsB. This update is always safe.

5. Addition of an authorization (s,A) to sec.rulesB. Such update also does not bring
any threats on the platform

6. Removal of an authorization (s,A) from sec.rulesB(s). If s ∈ CallsA ∩ ProvidesB, then
update is dangerous, as it will break a policy of application B. So application A
objects for such a security-threatening update of B (even if it is policy of B that will
be broken).

7. Addition of a service A.s to func.rulesB. In this case application B may not be func-
tional if application A does not provide this service s: s /∈ ProvidesA. But we can-
not say that applications A and B are conflicting, because nothing can force A to
install a new service on the platform and B’s life will not be improved even if A
will be completely removed. Thus the PolicyChecker will reject this update, but the
ConflictResolution component will not be invoked.

8. Removal of a service s from func.rulesB. Such update does not bring any problems
on the platform.

Note that in discussion on updates above we have specified possible problems with secu-
rity or functionality of the platform and also have shown how problematic updates create
conflicts between applications. Further we provide a motivating example.

Example 1 Applications EMV , ePurse and jT icket from the POPS case study example
[11, P. 31] are installed on the card. Application ePurse would like to withdraw its service
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payment from the platform. As jT icket relies on payment service in its functionality,
it would like payment to remain available. Such setting forbids removal of the payment
service. In this situation ePurse (Bank stakeholder) and jT icket (Transport stakeholder)
have conflict of interests.

2.5 The PolicyChecker Specification

We start with full specification of the (optimized) PolicyChecker component. First, a defini-
tion 3.2.2 of the evolved platform from the deliverable D6.3 [11, P.32] needs to be updated
in order to consider new (decremental) types of changes. Below we provide full definition
of the evolved platform (including evolutions already specified in D6.3):

Definition 2.5.1 (Evolved Platform) Let B be an application, an evolved platform Θ′ for
B from a platform Θ = 〈∆A,∆S ,A, shareable(), invoke(), sec.rules(), func.rules()〉 is defined
as follows:

1. Addition of a new application B: A′= A∪B.

2. Removal of an installed application B ∈ A: A′= A\{B};

3. Update of an installed application B ∈ A. This update can be expressed as a
sequence of simpler updates. For all applications A ∈ A, A 6= B holds:

(a) Addition of a service s to shareableB: shareable′A = shareableA and shareable′B =
shareableB ∪ {s};

(b) Removal of a service s from shareableB: shareable′A = shareableA and shareable′B =
shareableB\ {s};

(c) Addition of a service s to invokeB: invoke′A = invokeA and invoke′B = invokeB
∪{s};

(d) Removal of a service s from invokeB: invoke′A = invokeA and invoke′B = invokeB\ {s};
(e) Addition of an access authorization to service s for applicationC byB: sec.rules′A()

= sec.rulesA() and sec.rules′B() = sec.rulesB() ∪ {(s,C)} ;

(f) Removal of an access authorization (s, C) by B: sec.rules′A() = sec.rulesA() and
sec.rules′B() = sec.rulesB()\ {(s,C)};

(g) Addition of a necessary service s to func.rulesB: func.rules′A = func.rulesA and
func.rules′B = func.rulesB ∪ {s};

(h) Removal of a necessary service s from func.rulesB: func.rules′A = func.rulesA
and func.rules′B = func.rulesB\ {s};

Unless specified above, other components of the platform are unchanged.

We stress that in our model locking and unlocking applications is the same as removing
and reinstalling them again (correspondingly).

In the deliverable D6.3 [11] the PolicyChecker was introduced to deal with incremental
types of changes. Now we provide a full definition of the PolicyChecker that runs also on
removal of an application or parts of it.
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Definition 2.5.2 (Optimized Contract-Policy Compliance Checker (Policy Checker))
An Optimized PolicyChecker (or just PolicyChecker) is an algorithm for certification of changes
in the application B, that returns true iff the conditions below are true for all applications
A ∈ A on the platform:

1. Installation of a new applet B on the platform.

• B ∈ sec.rulesA(ProvidesA ∩ CallsB);

• func.rulesB ⊆
⋃

A∈A
ProvidesA;

• A ∈ sec.rulesB(ProvidesB ∩ CallsA);

2. Removal of already installed application B ∈ A.

• ProvidesB ∩ {
⋃

A∈A
func.rulesA} = ∅;.

3. An update of some application B ∈ A.

(a) Addition of a service s to ProvidesB: A ∈ sec.rulesB(s ∩ CallsA);

(b) Removal of a service s from ProvidesB: s /∈
⋃

A∈A
func.rulesA;

(c) Addition of a service s to CallsB: B ∈ sec.rulesA(ProvidesA ∩ s);

(d) Removal of a service s from CallsB: return true;

(e) Addition of an authorization rule for some application C to access a service s
of B to sec.rulesB: return true;

(f) Removal of an authorization rule for some application C to access a service s
of B from sec.rulesB: s /∈ CallsC OR s /∈ ProvidesB;

(g) Addition of a service s to func.rulesB: s ∈
⋃

A∈A
ProvidesA

(h) Removal of a service s from func.rulesB: return true;

The PolicyChecker rejects all updates if they do not comply with these checks. We
do not provide algorithms for the PolicyChecker as their implementation is straight-forward
from the definition 2.5.2.

2.6 The ClaimCheckerSpecification

We have presented an idea of the ClaimChecker component in the deliverable D6.3 [11].
Below is the definition 3.3.3 from [11].

Definition 2.6.1 (Claim Checker) A ClaimChecker algorithm for a new (updated) applica-
tion B is an algorithm that returns true iff the conditions below are true:

1. shareableB ⊆ ProvidesB.

2. invokeB ⊆ CallsB.

ClaimChecker is precise if shareableB=ProvidesB and invokeB=CallsB.
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In this deliverable we present actual specification of the precise ClaimChecker component.
Intuitively, the ClaimChecker has to check that application code and Claim are com-

pliant: all services that B has are declared in ProvidesB and all services that B invokes
are declared in CallsB. If we want to capture functional dependencies we have to require
the ClaimChecker to be precise. If, for instance, there is a service B.s that applet B has
declared, but does not actually provide, further another applet A, which may need to use
that service, can stuck.

The ClaimChecker defined by the current specification compares services just by their
names. On Java Card the client needs to import the export file of the server and to know
the details of the server implementation beforehand [14]. Consequently, we assume that
equal service names guarantee that these are indeed the same services.

We will discuss separately how the ClaimChecker can verify the declared set of pro-
vided services (server role) and declared set of called services (client role). When an
applet is being installed (or updated) the ClaimChecker will check it for being a honest
server and a honest client. Other checks that the ClaimChecker can provide are verifica-
tion of a security domain code and verification that indeed func.rulesB ⊆ CallsB.

The ClaimChecker can run on or off the card. On card implementation is more secure,
but also more tricky, as it requires an access to the installer. Because of these reasons
now we provide details of the ClaimChecker which can run on the JCA files that are some-
thing intermediate between standard class files and CAP files. JCA file contains bytecode
opcodes and has a structure similar to the standard class files, but linking (substitution of
the methods and classes names by some encoding, as specified in [15]) is implemented
similarly to the CAP files and export files. We will also use information from the export
files that are available both on card and off card.

We note that currently we provide sketches for the ClaimChecker algorithms. This is
due to the fact that on the moment of writing this deliverable the choice between on-card
and off-card implementation has not yet been made (Task 6.5 starts on M24). Thus we
have chosen to just outline possibilities of bytecode analysis. In fact, undoubtedly, the
ClaimChecker specification needs to be finalized with soundness guarantees, which can
be provided with a help of abstract interpretation techniques. We are going to provide
these guarantees during the 3rd year of the project.

2.6.1 Verification for Server

Two levels of precision are possible for server code verification. The ClaimChecker can
look at the declared public interfaces with superinterface Shareable. These are
declared interfaces that an applet might implement. However, the applet may never ac-
tually return a declared interface object and never declare any class that implements this
interface.

As specified in [15, Sec. 5] the export file contains all publicly available interfaces and
classes, including interfaces and classes that implement Shareable. These classes
and interfaces are labeled with special token (a number) in the export file. Looking into
export file in order to get all interfaces and their methods names can be a strategy for the
ClaimChecker for server code verification.

JCA verification

In the JCA file in order to capture all interfaces that implement Shareable, one needs
to look for the keyword .shareable in the public interface descriptions. Methods of
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interfaces with this keyword are the services of application that we are looking for.
The verification discussed above is an over-approximation for the server. To be more

precise the ClaimChecker needs to check that the server actually can return an instance
of a class implementing shareable interface (for each interface). This can be done by
looking at classes which have a label shareable. In such classes field
implementedInterfaceInfoTable provides details about interfaces implemented by
these classes. Shareable interface is listed here and also the interfaces defined by the
server that implement shareable. Their tokens can be matched with the actual inter-
faces declared in the interfaces field.

Having found for each interface a class implementing it, it is necessary to check that
the class has a method getShareableinterfaceobject() implemented and it will
return references to the corresponding interfaces. For each interface the server wants to
share we need to find at least one class that implements this interface and returns a ref-
erence to this interface (bytecode sequence: getfield a this X; areturn, where
X is a token of the interface ).

2.6.2 Verification for Client

In order to find an over-approximated set of services that may be called by the client,
we first look at the export files that client imports and the imported public interfaces it
declares. Indeed, the client is required to provide these details for successful linking.

JCA verification

To obtain a list of interfaces which the client can receive we first search for the token of
the method staticMethodRef 〈. . . 〉 Ljavacard/framework/Shareable in the
constantPool. In order to find all the client calls to the method
getAppletShareableInterfaceObject() of JCRE, which may return a Shareable
interface object the ClaimChecker will look in the bytecode for the instruction invokestatic
X, where X is the previously found token.

In order to understand which reference the client has received the ClaimChecker will
look at the next instruction: checkcast 0 Y. 0 in this instruction means that the ob-
ject is checked against a class or an interface. Y defines a number of the token in the
constantPool. This token appears in the constantPool with a keyword classref
W where W=V.Z, and V is a number of one of the imported classes, Z is a token for an
interface or class in V (it can be found in the export file of V).

We can capture the exact list of services invoked by the client if the ClaimChecker
will look for invokeinterface X Y Z instructions. invokeinterface is the only
bytecode instruction that allows context switch and can be used for invocation of the
Shareable interface methods [14, Sec. 6.2.8.6]. X is a number of arguments (plus 1), Y
is a token of the interface to be invoked and Z is a token of the method of the interface
to be invoked. Y has been identified by the ClaimChecker before and Z can be found from
the invoked class object table.

2.6.3 The Claim Checker Algorithms

In this section we sketch the ClaimChecker algorithms. For the algorithm that can verify
the server code we have chosen an over-approximation algorithm 2.6.1 that just ensures
that an application actually has all the services it declared in Provides set.
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Require: ProvidesB, code of JCA file of an applet B
Ensure: ProvidesB is compliant with B’s code.

1: W ← ∅
2: for All interfaces I with keyword .shareable do
3: for all methods m declared in I do
4: W ←W ∪m
5: if W = ProvidesB then
6: return TRUE
7: else
8: return FALSE

Algorithm 2.6.1: Claim Checker for the Server

For the client code verification the ClaimChecker can follow the algorithm 2.6.2 sketch.
The main steps include finding in the export files and the constantPool of the client
tokens of the shareable interfaces that the client obtains from other applications. Then
the ClaimChecker finds a subset of these tokens which appear with the instruction
invokeinterface and obtains the desired set of methods, which is matched with the
set CallsB. The ClaimChecker for the client on the last step will also check if declared
functional needs are honest: func.rulesB ⊆ CallsB.

The ClaimChecker for the client needs to capture only invocations of services that
are not GP-specific methods of security domains. Methods of the SecureChannel and
SecureChannelX interfaces [12, App. A] need to be excluded from the Calls set 2. In
the export file there are no details if the applet is a security domain or not. Thus we can
only assume that only security domains (and not simple applications) can provide on the
platform services of the SecureChannel and SecureChannelX interfaces.

Require: CallsB, func.rulesB, code of JCA file of an applet B, export files received with B.
Ensure: CallsB is compliant with B’s code.

1: W ← ∅
2: V ← ∅
3: for All entries in the constantPool with keyword classref X.Y do
4: Find in the export file of X an object corresponding to Y;
5: if Y corresponds to the interface SecureChannel or SecureChannelX then
6: skip
7: else
8: V ← V ∪ (I,X, Y ), where I is a number of the entry;
9: for All instructions invokeinterface X Y Z do

10: if Exists an element (Y,C, Z) ∈ V then
11: Find in an export file for C a service name s for token Z
12: W ←W ∪ s
13: if W = CallsB AND func.rulesB ⊆W then
14: return TRUE
15: else
16: return FALSE

Algorithm 2.6.2: Claim Checker for the Client

2In fact, there are other GP-specific services invocations that can appear in the code of the client, but
need to be excluded from Calls set: Global Registry service requests, CVM services requests, etc.
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We note that if an algorithm fails at some step because it cannot find a neces-
sary export file or an entry, then the installation process will fail itself and results of the
ClaimChecker verification will not be considered.

Algorithms above specify a precise ClaimChecker.

The ClaimChecker for New Security Domain

As security domains are not supposed to provide services except the ones implemented
for GlobalPlatform-defined purposes and to call any services, besides such GP services
of higher domains, it is necessary to provide an algorithm specifying the ClaimChecker
for a security domain. We will just sketch this algorithm as its details follow from the
ClaimChecker algorithms for server and for client.

1. Ensure that loaded application is indeed a security domain by verifying correspond-
ing privileges 3.

2. Using ideas of the ClaimChecker for the server algorithm 2.6.1 find in the JCA file of
the security domain set W of interfaces extending GPSystem.SecureChannel or
GPSystem.SecureChannelX interfaces.

3. Check that no other shareable interfaces besides the ones in W are declared. If it
is not the case, return FALSE.

4. Check that the only methods of interfaces in W are the ones declared in the GP
specification [12, P. 198] and [12, P. 208]. If it is not the case, return FALSE.

5. Using ideas of the ClaimChecker for the client algorithm 2.6.2 find the set V of called
services. Ensure that V contains only services declared in the GP specification [12,
P. 198] and [12, P. 208] for SecureChannel and SecureChannelX interfaces. If
it is not the case, return FALSE .

6. Return TRUE.

2.6.4 The ClaimChecker for Evolution

The definition 2.5.1 of platform evolution is specified for the actual code of applications
(sets shareable and invoke), but the PolicyChecker works only on Contract and security
policy P. Thus it is necessary to match the actual code and the declarations in the
Contract. This is exactly the ClaimChecker responsibility. For the evolution that represents
installation of a new applet the algorithms are presented in the section 2.6.3 (by definition
of the precise ClaimChecker). But for the atomic updates the algorithms for the server and
client need to be adjusted correspondingly. We provide just general ideas for the updated
algorithms. Their implementation is straight-forward and similar to the algorithms of the
ClaimChecker listed in the section 2.6.3.

• Server-side verification needed: Addition/removal of a service s to/from shareableB.
In case of addition service s is declared as added to the set ProvidesB in the ContractB
and the goal of the ClaimChecker is to verify that indeed this service was added. In
order to do that the ClaimChecker looks in the JCA file of B for all interfaces with the
keyword .shareable and within them tries to find the service s. If the ClaimChecker

3See the section 2.7.5 for details.
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succeeds, then it returns TRUE, otherwise it returns FALSE. Analogously, inverted
results of this check can be used for assurance that the service s has been removed
from the set ProvidesB.

• Client-side verification needed: Addition/removal of a service A.s to/from invokeB.
In case of addition service A.s is declared to be added to the set CallsB and the
ClaimChecker is required to guarantee that indeed B can potentially invoke a service
s of application A. The idea for the ClaimChecker in this case is that it tries to find an
instruction invokeinterface X Y Z in the JCA file of B where Y is a token from
the constantPool that corresponds to an imported interface of A and Z is a token
for the service s in the export file of A. If it succeeds to find such command, then
the ClaimChecker returns TRUE, otherwise it returns FALSE. It might be the case
that updated applet B does not import an export file of A and does not have tokens
related to A in the constantPool. In this case the ClaimChecker returns FALSE.
These checks can be inverted to verify truthful declaration of removal of a service s
from invokeB.

2.7 Conflict Resolution Component

Business case for smart card domain is usually more demanding than simple rejecting
a dangerous update. In the sections 1.1.4 and 1.1.5 we have explained the hierarchical
organization of the card content and the set of privileges available on the card. These
properties of smart cards with GP allow more refined reasoning about updates.

Security domains are representatives of the stakeholders on the card. A stakeholder
can provide one or several security domains. Usually each stakeholder associates her
main security domain with itself, thus making it a root in the forest of the security domains
hierarchy.

Our main goal is to keep platform secure after every update. If some update is
security-threatening, we always have a possibility to reject it. But for satisfaction of in-
dustry needs we have to enable the framework with other possible options. We might
want to accept certain kinds of updates, always making sure that the platform after an
update is again in a secure state. This can be performed by making unselectable other
conflicting applications already installed on the card.

Smart card platform can prioritize applets on the card depending on which stakeholder
they belong to and which privileges this stakeholder has. For example, card issuer is
always the most privileged stakeholder. This fact is also reflected in the ability of the card
issuer to assign GP privileges on the card, privilege to delete any card content among
them. The issuer’s security domain can delete or lock any application A on the card
if it prevents issuer’s applet BISD from installation. We have already discussed in the
section 2.4 how various conflicts can arise from atomic updates of applications. Now we
will demonstrate how such conflicts can be resolved in the presence of the stakeholders
hierarchy.

2.7.1 Addition to the formal model

Previously we have presented the formal model of the smart card platform and the
ClaimChecker and the PolicyChecker specifications that were built on top of that model.
For the conflict resolution component ConflictResolution it is necessary to add the GP

Impact analysis of new security requirements | version 1.0 | page 31 / 77



privileges to the model. We also need to specify Issuer’s Security Domain (ISD) among
other security domains.

We denote as T the set of chosen privileges which are represented as tokens.

1. tAM is an Authorized Management privilege;

2. tDM is a Delegated Management privilege;

3. tGL is a Global Lock privilege;

4. tGD is a Global Delete privilege;

Thus T ={tAM, tDM, tGL, tGD}. An element of this set we will also denote as t. We denote
security domain SD with privilege t as SD〈t〉. For example we may have on the platform
an SDA〈tGL〉 or SDB〈tDM, tGD〉. Security domain without privileges is denoted SD〈 〉. If
privileges are not important we will continue to use old notation SD instead of SD〈t〉 or
SD〈 〉.

Assumptions

We suppose that ISD is a dominant domain on the card, as in the GP specification ISD is
explicitly listed as a part of the card manager [12, Sec. 1.5.2.8]. Issuer is a stakeholder
with the most capabilities. Other stakeholders (application providers) are considered to
be equal. As security domains are representatives of the stakeholders, we consider the
corresponding security domains to be equal. But GP privileges empower some of security
domains with capabilities to manage data and applications of other security domains.
Consequently, we suppose that if a security domain SD1 has a Global Lock privilege (or
any other privilege among those specified in the section 2.7.1) then it has a priority over
another security domain SD2 without any privileges.

Security domains on the card are organized into a forest due to extradition process.
GP spec allows a security domain SD to manage (locking and removal) other security
domains and applications that are associated (directly or indirectly) with SD.

Following are our assumptions:

1. Security domains from the same provider belong to the same tree.

2. The privileges from set T are equal.

3. We define privileges as belonging to a specific domain SD and not to all domains
that SD is associated with. Another option is to consider that a security domain can
use all the privileges of its subdomains. We can easily implement this option in our
model – it is enough to propagate the privileges of a security domain SD to all the
domains SD is associated with directly or indirectly.

For security and functionality verification process (see the section 2.8 for more details)
of the PolicyChecker changes in the security domains hierarchy are not relevant. But
these changes influence the ConflictResolution component’s process and so we need to
consider them now. As the idea of conflict resolution is to make conflicting applications
(that were lower in the hierarchy) unselectable, another important update to the platform
model Θ is a set of unselectable applications that is maintained by the S×C framework.
After each new update applets from this set are checked to be made selectable again.
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We use notation SD1 ≥ SD2 if security domain SD2 is associated with security do-
main SD1 directly or indirectly. Association relation ≥ is not a partial order, because not
all security domains are associated with themselves (so it is not reflexive). But this re-
lation is transitive and antisymmetric. Our another assumption is on association relation
∝ that matches each application with corresponding security domain. We consider that

each application A ∈ A is associated with one security domain SD ∈ D.
In order for the platform model to be consistent with already defined components we

propose a definition of extended platform. This definition can be used by all components
of S×C framework.

Definition 2.7.1 (Extended Platform) Extended platform Θext is a tuple 〈∆D,∆A,∆S ,D,
A, shareable(), invoke(), sec.rules(), func.rules(), ∝ , ≥ , priv.domains,Unselectable〉, where
relation ∝ ⊆ A∪Unselectable×D is a relation of association between application and se-
curity domain; relation ≥ ⊆ D×D is transitive and antisymmetric relation for association
between security domains; priv.domains ⊆ D×T is a relation for privileges assignment;
Unselectable ⊆ ∆A\A is a set of currently unselectable applications.

Security policy for the extended platform is defined as in the definition 2.3.3. Again we
do not consider security domains and corresponding relations as relevant for the security
policy. It is necessary also to stress that Unselectable is a set of unselectable applications
that were locked due to the ConflictResolution component reasoning. There could be
more unselectable applications on the platform, that were made unselectable because of
requests of their providers or due to other reasons, but we do not consider them in the
model. In our model such unselectable applications (not members of Unselectable set)
are considered being removed.

ISD ∈ D is the Issuer’s Security Domain. ISD is always installed during card is-
suance and is normally a native application rather than Java one. It is not possible to
associate ISD with any other domain except itself. We assume that ISD has all possible
privileges on the platform.

Example 2 As specified in the deliverable D1.1 [5], in the POPS case study Mobile Op-
erator is a card issuer and an owner of the Issuer’s Security Domain (ISD). ISD per-
forms installation of SDBank security domain and initially SDBank is associated with ISD:
ISD ≥ SDBank . Then according to the agreement SDBank is extradited and associated
with itself, becoming a root in its own tree of domains: SDBank ≥ SDBank.

2.7.2 Security Domains Hierarchy Revisited

We will use notation SD1 . SD2 to define the fact that security domain SD1 is able to
manage security domain SD2 in the domains hierarchy or by specific privileges. If neither
of SD1 and SD2 is able to manage each other, then these security domains are incom-
parable. Security domains association relation ≥ is a part of the relation . ⊆ D ×D.

Definition 2.7.2 A pair (SDX , SDY ) ∈ . if and only if one of the following conditions
holds:

• SDX = ISD;

• SDX = SDY ;

• (SDX , SDY ) ∈ ≥ ;
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• (SDX , t) ∈ priv.domains AND for all q ∈ T (SDY , q) /∈ priv.domains.

Managing relation . is not transitive. Informally, this relation specifies managing
possibilities of specific security domain with respect to another security domain. If SDA .
SDB, then SDA is able to perform certain manipulations with applications of SDB using
GP operations. More precisely, SDA is able to remove/lock SDB or any of its applications.
Consequently, if SDB is the domain that prevents an update of SDA then after being
rejected by the verifier SDA may try to remove/lock SDB or its applications. This will be
considered as another update by the verifier. If nobody relies on SDB this update will be
authorized. Then SDA will freely perform the previously desired update.

We note that in the scenario described above we still assume absence of a possi-
bility to bypass the verification process. GP operations which provide some managing
capabilities are in full compliance with this assumption.

2.7.3 Extended Platform Evolution

For extended platform Θext we define new possible types of evolution (besides the ones
that were defined for Θ and are still applicable). Again we specify just evolved compo-
nents of the platform.

Definition 2.7.3 (Updates Specified only for Extended Platform) 1. Installation of a
security domain SD with a set of privileges TSD ⊆ T and association of SD with
some domain SD1: Dnew = D∪SD, ≥ new= ≥ ∪(SD1, SD) ∪ (SDk, SD) for all
SDk such that (SDk, SD1) ∈ ≥ , priv.domainsnew=priv.domains∪(SD, t) for all
t ∈ TSD.

2. Removal of a security domain SD associated with SD1: Dnew = D\SD, ≥ new=
≥ \{(SD1, SD), (SDk, SD)} for all SDk such that (SDk, SD1) ∈ ≥ , priv.domainsnew
= priv.domains\(SD, t) for all (SD, t) ∈ priv.domains. We allow such update only
when applications associated with the domain SD have already been removed.

3. Extradition of a security domain SD from a domain SD1 and association of it with a
domain SD2: ≥ new = { ≥ \{(SD1, SD), (SDk, SDq), (SDk, SD), (SD1, SDq)}} ∪
(SD2, SD) ∪ (SDm, SDq) ∪ (SDm, SD) ∪ (SD2, SDq) for all SDk such that
(SDk, SD1) ∈ ≥ , all SDq such that (SD, SDq) ∈ ≥ and all SDm such that
(SDm, SD2) ∈ ≥ .

4. Assignment of a privilege t to SD: priv.domainsnew = priv.domains∪(SD, t) where
t ∈ T .

5. Removal of a privilege t from SD: priv.domainsnew = priv.domains\(SD, t) where
t ∈ T .

6. Extradition of application A ∈ A∪Unselectable from security domain SD1 to security
domain SD32: ∝ new = { ∝ \(A,SD1)} ∪ (A,SD2).

It is easy to show that updates specified in the definition 2.7.3 cannot break security
or functionality on contract level on the extended platform. Definitions of security and
functionality on contract level can be found in [11] or further in this deliverable in the
section 2.8.
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We note that application updates specified for platform Θ are applicable to the ex-
tended platform Θext with minor modifications: for example, application installation (re-
moval) adds (removes) corresponding element to (from) the ∝ relation.

Update to the managing relation . is straightforward. Since security policy P does not
include security domains hierarchy these updates are not verified by the PolicyChecker.

Internal Updates

We want to stress that before we only considered evolutions on the platform that were
triggered externally by one of the stakeholders. Instead with applications from the set
Unselectable the process of making one of the applets unselectable is internally triggered
by the S×C framework.

2.7.4 Conflict Resolution Algorithm

We denote an application that requested an update as B and its security domain as SDB.
We denote as C1, . . . , Ck applications that prevent an update to be executed, because the
update is conflicting with their interests. Correspondingly we denote as SDC1 , . . . , SDCk

their security domains.
Conflict resolution component’s purpose is to reason about possibility of update taking

into account the managing relation . specified above. Update is allowed if the requester
SDB is able to manage all security domains SDCi , i = 1..k. Conflict resolution com-
ponent must also take into account other domains, that might be affected if applications
C1, . . . Ck become unselectable. Consequently, for any application Ck that needs to be
made unselectable the ConflictResolution component must run the reasoning again con-
sidering request for deletion of Ck as an update (with SDB as a requester for this update).
The process is cascade-like and repeats a part of the PolicyChecker algorithms, since it
has to identify the conflicting applications.

Potentially the PolicyChecker can define conflicting applications C1, . . . Ck and trigger
the ConflictResolution component. But in order to make the PolicyChecker component
consistent with the framework without conflict resolution process we do not modify its im-
plementation. So the ConflictResolution will just receive as input a specification of update.

We will denote an update to application B as 〈A,B, update〉, where A is an AID of
application requesting the update (can be B itself), string update is one of the updates
specified in the section 2.4.

The algorithm of the ConflictResolution is based on the following steps:

Input 〈B,B, update〉, Θext, .

Output Accepting/Rejecting update

1. Find the conflicting applications C1, ..Ck and corresponding security domains
SDC1 , ..SDCk

.

2. Define whether SDB . SDCi for all i = 1..k. If it is not the case, reject the update.

3. For each Ci run the ConflictResolution algorithm with 〈B,Ci, deletion〉 as an input. If
some returns with “Reject”, reject update.

4. Otherwise, accept update
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The algorithm 2.7.2 of ConflictResolution component is provided below. It uses proce-
dure UpdateQuery 2.7.1 with parameters (applicationA, query of updatesConflictQuery).
ConflictResolution component algorithm 2.7.2 is invoked on an atomic update of the type
specified in the definition 2.4.1. It can be as well invoked on a sequence of such atomic
updates (for example, removal of an application or installation of an application is a se-
quence of atomic updates). It is necessary to emphasize that addition of a service A.s to
func.rulesB is not checked by the ConflictResolution component as it is not a conflict (see
the section 2.4 about atomic updates for more details). In case of this update the final
decision will be taken by the PolicyChecker.

Require: A ∈ A, ConflictQuery
Ensure: Updated ConflictQuery

1: for all m ∈ ProvidesA do
2: push 〈B,A, remove m from ProvidesA〉 to ConflictQuery
3: for all m ∈ CallsA do
4: push 〈B,A, remove m from CallsA〉 to ConflictQuery
5: for all (m,D) ∈ sec.rulesA do
6: push 〈B,A, remove (m,D) from sec.rulesA〉 to ConflictQuery
7: for all m ∈ func.rulesA do
8: push 〈B,A, remove m from func.rulesA〉 to ConflictQuery
9: return ConflictQuery

Procedure 2.7.1: UpdateQuery Procedure

Unselectable Applets Support

Note that ConflAppList is a list of applications that are in a conflict with application B
which requested the update. If update is accepted all applications from this list must be
set as unselectable. So as internal evolution of the Θext: Unselectable′ = Unselectable ∪
ConflAppList. Also platform security policy needs to be updated correspondingly: P ’ =
P\{ContractA} for all A ∈ ConflAppList. We also save intermediate value of ConflAppList.
Further we prove that updated extended platform Θext is secure.

As we already mentioned, after each update (of the types of the Def. 2.4.1 that are
relevant for the PolicyChecker) unselectable applications from the set Unselectable have to
be revisited in order to check if now they are compliant with the security policy P. Though
there is no point to check applets that were marked as conflicting during the last invocation
of the ConflictResolution component (current value of the ConflAppList set corresponding
to the last update). We provide algorithm 2.7.3 for this check of the Unselectable applets.
After its run the extended platform should be updated correspondingly. Obviously for
this algorithm order of verification matters. We may choose which logic to implement for
maintaining some order on the Unselectable set. For example, we can consider order of
unselecting applications, . relation and so on.

On GP a security domain that is directly or indirectly associated with unselectable
(locked in GP terminology) application can request OPEN to unlock it. As well, a secu-
rity domain with Global Lock privilege can request OPEN to unlock any other applica-
tion. In order to prevent unlocking of unselectable applications (that were locked after
the ConflictResolution component run due to security reasons) it is necessary to add a
new check to the verification process performed by OPEN: during application unlocking
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Require: 〈B,B, update〉
Ensure: Accept/Reject Update decision

1: ConflictQuery = ∅
2: add 〈B,B, update〉 to ConflictQuery
3: ConflAppList ← ∅
4: while ConflictQuery 6= ∅ do
5: pop first element 〈B,C, update〉 from ConflictQuery
6: find SDB and SDC such that (B,SDB) ∈ ∝ , (C, SDC) ∈ ∝
7: if NOT (SDB . SDC ) then
8: return Reject
9: else

10: if update = add service A.s to ProvidesC then
11: for all A ∈ A do
12: if s ∈ CallsA AND (s,A) /∈ sec.rulesC then
13: if A /∈ ConflAppList then
14: add A to ConflAppList
15: UpdateQuery(A,ConflictQuery)
16: if update = remove service s from ProvidesC then
17: for all A ∈ A do
18: if s ∈ func.rulesA then
19: if A /∈ ConflAppList then
20: add A to ConflAppList
21: UpdateQuery(A,ConflictQuery)
22: if update = add service A.s to CallsC then
23: if s ∈ ProvidesA AND NOT (s, C) ∈ sec.rulesA then
24: if A /∈ ConflAppList then
25: add A to ConflAppList
26: UpdateQuery(A,ConflictQuery)
27: if update = remove authorization (s,A) from sec.rulesC then
28: if s ∈ CallsA AND s ∈ ProvidesC then
29: if A /∈ ConflAppList then
30: add A to ConflAppList
31: UpdateQuery(A,ConflictQuery)
32: return Accept, ConflAppList

Algorithm 2.7.2: Conflict Resolution Algorithm

process OPEN shall check that application is not in the Unselectable set. This check is
similar to the ones already defined for application locking and unlocking [12, Sec. 9.6.2].

2.7.5 Conflict Resolution Implementation Details

In this section we provide a guideline for ConflictResolution component implementation
on Java Card and GlobalPlatform smart card. Our first goal is to provide details of
application code and installation process (on Java Card and GP) that are required for
ConflictResolution implementation.

GP specification defines some modifications to the Java Card implementation in or-
der to ensure compliance of two specifications. We discuss further the details of such
implementation that highlight connections between our formal model and algorithms with
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Require: Unselectable, P, ConflAppList, Θext.
Ensure: X ⊆ Unselectable

1: X ← ∅
2: Platform ← Θext

3: Policy ← P
4: for All B ∈ Unselectable\ConflAppList do
5: Run PolicyChecker algorithm for new application installation on Platform with

B,ContractB as input
6: if PolicyChecker accepts such update then
7: add B to X
8: update Platform with B
9: update Policy with ContractB

10: return X

Algorithm 2.7.3: Algorithm for Unselectable Applets

the actual smart card realization.

Privileges

When updates 2.7.3 specified for the extended platform Θext occur OPEN receives details
of the privilege (re-)assignment.

Privileges are implemented on GP as tokens and data about them is stored in the GP
Registry. GP Registry on Java Card is implemented as an applet. Registry entries might
be obtained though calls to specific public interface GPRegistryEntry which
extends javacard.framework.Shareable. Fields and methods of this interface are
specified in GP specification [12, P. 109]. Fields contain data on the privileges assigned to
this application. Application A that wants to have an information from the Registry about
an entry for the applet B makes a call to OPEN with AID of B. If A has corresponding
privilege (Global Registry privilege) or has access right for this entry, OPEN returns to A
the desired object.

So one possibility is to implement ConflictResolution component as an applet with
Global Registry privilege. Below we specify from which details of the application code (on
Java Card and GP) it is possible to obtain privilege assignment priv.domains relation.

1. Security domain installation. We note that security domain is an applet itself, so
we will look at the application installation process. [12, sec. A1] Method install
of class Applet defined for the Java Card applications [13] should be invoked with
parameters bArray, bOffset, bLength. Parameter byte [] bArray con-
tains, among all, data on privileges length and the privilege tokens. OPEN verifies
the received parameters. Then applet registers on the platform (and in the GP
Registry) with the method register (byte [] bArray, short bOffset,
byte bLength). Thus we may obtain an information on the requested privileges
from the applet code itself. Or this information can be obtained from the GP Reg-
istry. In order to become a security domain an application needs to have corre-
sponding Security Domain privilege.
For the bytecode verification we are interested in the method register() which
is a part of javacard.framework. register() is listed in the constantPool
section of the applet’s JCA file. As we obtain the number X of this command we can
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find invocation of it in the bytecode (invokespecial X, invokestatic X or
invokevirtual X) and obtain details of parameters on the stack.

2. Another interesting detail is obtaining details of privileges reassignment and Reg-
istry update. Unfortunately these details are available only at run-time. Privileges
reassignment and application extradition are requested by the stakeholder authen-
ticated to the card and are not specified in the application code. Thus we cannot
obtain these details from the bytecode. We may try to investigate the process()
method of the application in order to see which commands an application could re-
ceive from outside the card but it will be a huge overapproximation. Consequently
we have to rely on availability of the GP Registry data.

Additions to the Conflict Resolution Logic

The managing relation . and conflict resolution logic can be defined differently. For
example, we may assume that security domains association provides to the higher-level
domains an ability to use the privileges of their subdomains. Another reasonable addition
to the ConflictResolution logic could be to ensure an ability of each security domain to
manage its own applications decrementally (to make some service unavailable or to forbid
its usage). Card issuer can decide which logic to implement taking into account all the
business agreements between stakeholders.

2.8 Validation of the Approach

In the deliverable D6.3 [11] we have presented validation results for the tandem of the
ClaimChecker and the PolicyChecker. In this deliverable we provide validation results for
the extended platform Θext and the ConflictResolution component. Specifically, we want
to prove that ConflictResolution process provides sufficient guarantees that Θext is secure
after an update that was approved by the ConflictResolution component.

We recall that the Theorem 3.4.2 of [11] states that the ClaimChecker and the
StaticPolicyChecker together ensure that the platform Θ is secure. The Theorem 3.4.3 of
[11] states that in fact the PolicyChecker (which performs optimized checks) is equivalent
to the StaticPolicyChecker that runs complete compliance checks for all applications. We
refer an interested reader to the deliverable D6.3 [11, Sec. 3.4] for more details. Thus for
reasoning about guarantees that the ConflictResolution component delivers it is enough
to show that if an update is accepted, then security and functionality on contract level are
maintained.

Security and functionality on extended platform Θext are defined similarly to secu-
rity and functionality on platform Θ. In the model Θext application communications are
performed in the same fashion as in the Θ model. Namely, the applications communi-
cate through usage of services of each other. Security domains association relations do
not bring communication means (in assumption that security domains themselves do not
organize shareable interfaces except the ones required by the GlobalPlatform specifica-
tion).

We recall the definition of the StaticPolicyChecker:

Definition 2.8.1 (Static Policy Checker) A StaticPolicyChecker algorithm for platform Θ
and changed application B is an algorithm, that returns true iff for all applications A,B ∈
A and services s ∈ S
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• Security on contract level: if B.s ∈ CallsA and s ∈ ProvidesB then A ∈ sec.rulesB(s).

• Functionality on contract level: if B.s ∈ func.rulesA then s ∈ ProvidesB.

Intuitively, the StaticPolicyChecker checks that AppPolicyA for every application A ∈ A is
satisfied on the platform.

Theorem 2.8.2 If extended platform Θext is secure and the ConflictResolution component
is sound and accepted an update, and the applications specified by the ConflictResolution
component in the ConflAppList set were made unselectable, then updated extended plat-
form Θext’ maintains security and functionality on contract level.

Proof. It is easy to show that updates specified in the definition 2.7.3 do not threat
security or functionality of the extended platform (definition 2.8.1). Only updates specified
for applications in the definition 2.4.1 can be security- or functionality-threatening.
Let an update of application B of one of the types defined in 2.4.1 has been performed.
Assume security on contract level is broken after this update: for some application C ∈ A
exists an application D ∈ A such that C.s ∈ CallsD and s ∈ ProvidesC, but (s,D) /∈
sec.rulesC. This means that C was not identified as a conflicting application in the
ConflictResolution algorithm. Before update the platform was secure, consequently either
C.s was not in the set CallsD, or s /∈ ProvidesC, or (s,D) ∈ sec.rulesC and the change was
a consequence of the conflict resolution process.
We reason by the type of update. The ConflictResolution process only reasons on the
initial update and on potential locking of applications that are in conflict with the initial
update. Application locking can produce removal of an authorization rule, but cannot
produce addition of a service to Calls or Provides sets. Consequently these two changes
can only be a result of the initial update and we only need to check if such types of
update (and also removal of an authorization rule as initial update) can bring the extended
platform Θext to be insecure.

• Initial update: addition of a service s to ProvidesC. ConflictResolution component
will check for all applications A ∈ A that if they invoke service s then they are
authorized to do it. If ConflictResolution component had found such an application
D ∈ A that calls s and is not authorized, then D is added to the ConflAppList.
If update was accepted, then applications from ConflAppList become unselectable
and do not provide their AppPolicy to the platform security policy P. Hence such
type of update (if the ConflictResolution component is implemented correctly and
accepted an update) cannot lead to the extended platform Θext being insecure on
contract level.

• Initial update: addition of a service C.s to CallsD. The ConflictResolution component
checked that if s ∈ ProvidesC, then (s,D) ∈ sec.rulesC. If it does not hold, then
ConflictResolution had added D to a list of conflicting applications. If update was
accepted, then D has become unselectable. Consequently, extended platform is
secure on contract level.

• Initial update: removal of an authorization (s,D) from sec.rulesC. The ConflictResolution
component had ensured that if s ∈ ProvidesC and s ∈ CallsD, then A was added to
the ConflAppList. Consequently, since the update was accepted, D has become
unselectable.
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• A conflicting application C: an authorization rule (s,D) has been removed from
sec.rulesC after execution of the ConflictResolution component. In this case appli-
cation C has been found as conflicting with an initial update of application B and
request for locking C had been processed. As initial update was accepted, we know
that C was added to the ConflAppList, as only applets from this list are processed for
possibility of removal. Consequently, C has become unselectable and is excluded
from the security policy of the platform.

Let after a run of the ConflictResolution component functionality on contract level is broken.
It means, by definition, that for some applications C,D ∈ A service D.s ∈ func.rulesC but
s /∈ ProvidesD.
As the extended platform Θext was secure before the ConflictResolution run, then before
an initial update either service D.s was not in func.rulesC, or D.s was in ProvidesD, but was
removed.
We reason again by the types of update. Addition of a functionally necessary service
may happen only as initial update requested by applet B. We remind that this type of
update is not processed by the ConflictResolution component and is, instead, verified by
the PolicyChecker. Functionality of the platform for this type of update was established in
the deliverable D6.3 [11]. Removal of a provided service may happen as initial update, or
it can be an update created by the ConflictResolution component if some application was
conflicting with applet B.

• Initial update: removal of a service s from ProvidesD. In this case for all C ∈ A
the ConflictResolution component had checked that if D.s ∈ func.rulesC then C was
added to the set ConflAppList of conflicting applications and, since the update was
accepted, C has become unselectable.

• Service s has been removed from ProvidesD during an update created by the
ConflictResolution component run on the initial update of an applet B. Thus applica-
tion D was labeled as a conflicting application and was added to the ConflAppList.
Since the initial update was accepted, D has become unselectable. Moreover, any
application C ∈ A such that D.s ∈ func.rulesC was also made unselectable.

It is also easy to prove (also reasoning by cases) that if the card manager will make
selectable applications found by the algorithm 2.7.3, the extended platform will be secure.

2.9 Brief Notes about Verification for Access to Security Do-
mains Services

As we discuss further in the chapter 6, one of the security properties that WP6 is con-
sidering is information protection. But only information protection by flow control is in the
scope of the WP6 (on-device verification) in terms of the SecureChange project (see the
chapter 6, [4] and [3] for the details). However, we may also consider information protec-
tion by access control property focusing on the access to the security domains services.

Access to the associated security domain services is granted to an application by the
OPEN (GPSystem operations). Such operations are not considered in the Security-by-
Contract framework, as they are not specified in the application policies. Correspond-
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ingly, the ClaimChecker does not verify authorizations for access to security domains GP-
specific services, though malicious applets can use standard Java Card means to reach
such services. GP specification requirement states that “The SecureChannel interface
shall only be exposed through the GPSystem.getSecureChannel() method” [12, P.
198]. Consequently, one possibility to protect against that is to forbid to security domains
implementation of getShareableInterfaceObject method.

Another option, that brings more flexibility, is to verify also access to the security
domains services. The idea for this verification could be the following: if an application B
invokes a method that is among the SecureChannel and SecureChannelX services
of security domain SDC , then we need to check that B ∝ SDC or B ∝ SDB AND
SDC ≥ SDB.

Thus we will be able to verify the direct access to the security domains services on the
Java Card level. Correctness of the access control implementation on the GlobalPlatform
level is ensured by the Testing work package (see the chapter 6). More interesting is
another threat scenario, that assumes collaboration of a malicious applet B and another
applet C, that is associated with a security domain SDC . In such setting, if C is also ma-
licious or else buggy, B may use services of C to get access to the GP-specific services
of SDC . Such threat can be potentially investigated by, for example, the transitive control
flow verification techniques, presented in the chapter 3.

2.10 Conclusions

In this chapter we presented full S×C framework for multi-application smart cards. This
framework consists of two necessary components: the ClaimChecker and the PolicyChecker,
and optional ConflictResolution component. Verification process done by this framework
ensures that at run-time there are no illegal service invocations on the card (no illegal
direct control flow).

In the deliverable D6.3 [11] we had presented the Security-by-Contract framework
and advocated its benefits. In the current deliverable we extended the framework and
presented its tight connections with the Java Card and GlobalPlatform-enabled smart
cards. Thanks for the ClaimChecker component, which ensures that application contract
is compliant with the actual code, we have shown how application implementation is
related with the formal model.

Proposed framework provides strict security guarantees that were demonstrated for-
mally. The guarantees also include introduced ConflictResolution component. This com-
ponent brings on the platform more flexibility, as it allows the card issuer to specify more
complex approach to updates (while keeping the platform secure).

The next goal that needs to be achieved by M36 with the deliverable D6.5 is real-
ization of the S×C framework as a part of actual Java Card + GlobalPlatform smart card
implementation (or on a card simulator).

Impact analysis of new security requirements | version 1.0 | page 42 / 77



3. Transitive Control Flow

The transitive control flow model described in the Chapter 4 of the deliverable D6.3 and
in [10] only deals with addition of new applications and domains. The goal of this chapter
is to investigate the impact of application removal and modifications of the security policy
in this model. It is important to notice that the objective is not to roughly allow such
changes but to provide an efficient solution with an overhead cost (memory consumption
and computations) as low as possible to suit the requirements of smart cards, the most
constrained target from the case studies of SecureChange.

We build on the definitions and algorithms introduced in the Chapter 4 of the deliv-
erable D6.3. Nevertheless, before we detail the impact of new changes in the model,
we first slightly modify the existing model in Section 3.1. Several solutions to deal with
application removal are then detailed in the Section 3.2, and with domain removal in the
Section 3.3. Finally we describe how to deal with modifications of domains hierarchy on-
device in the Section 3.4, and with modifications of control flow policies for applications
already installed in the Section 3.5.

3.1 Amendments to the existing model

In this model we focus on maintaining the device secure across some requested changes,
but not on functional requirements and dependencies between applications. We assume
such dependencies to be handled by the underlying platform.

3.1.1 Non-selectable applications

In the model described in the Chapter 4 of the deliverable D6.3, we constrain each ap-
plication with unsolved dependencies to be non selectable. From the specific point of
view of secure control flows, this constraint is useless when applied to an application with
unsolved dependencies. In fact, if an installed application B relies on some services pro-
vided by an application A not yet loaded, then B cannot break the security of the system
if it becomes selectable since it cannot concretely invoke methods while their bytecode is
not loaded, whatever the security policy that will be attached by A to its shared services.

For this reason, we modify the install procedure (Section 4.3.1 of the deliverable D6.3)
applied after a successful verification (Algorithm 4.3.2 of the deliverable D6.3) of a newly
installed application A in a domain d of a secure system S = (D,A,U , δ,P):

install(A, d,S) = (D,A ∪ {A},U ′, δ[A 7→ d],P ′)

with P ′ defined as previously and

U ′ = {A′ | A′ ∈ A ∪ {A},∃A′.C ′.m′ ∈MA′ , (A′.C ′.m′ ≤ A′′.C ′′.m′′) =⇒ (A′′ 6∈ A)}
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This new definition of U ′ makes non-selectable only applications having unsolved in-
heritance dependencies, which corresponds to the actual behavior according to Java Card
specifications [1].

3.1.2 Cleaning verification operations

The Algorithm 4.3.2 of the deliverable D6.3 refers to some “cleaning operations” (line 17)
applied at the end of the installation of a new application in the system. These operations
have not been detailed in the deliverable D6.3, we now explicit them.

Cleaning the unsolved mapping consists in removing mappings of methods for which
verifications have been postponed until their loading on the system and that have been
successfully loaded during a run of the algorithm. Let E be the set of applications still not
loaded in the system after a run of the Algorithm 4.3.2 of the deliverable D6.3.

E = {A | ∃A′ ∈ A, A ∈ wait(A′) =⇒ A 6∈ A}

Let ME be the set of methods invoked by some loaded bytecode and defined in an
application of E .

ME = {E.C ′.m′ | E ∈ E ,∃A.C.m ∈M, E.C ′.m′ ∈ Idirect(A.C.m)}

The methods inME are the only one for which the control flow policy is still unknown,
and thus for which the verification is postponed. Expected control flow policies gathered
during the verification of methods calling methods in ME and stored in the unsolved
mapping are thus the only one to be kept. As a consequence, cleaning the unsolved
mapping simply consists in restricting its domain toME .

unsolved = unsolved|ME

Cleaning the ruleswait mapping consists in removing mappings of methods loaded,
installed and without any unsolved dependency to another application. LetW be the set
of applications waiting for at least one other application.

W = {A | A ∈ A, wait(A) 6= ∅}

LetMW be the set of methods defined in applications ofW.

MW = {W.C.m |W.C.m ∈MW }

The methods in MW are the only one for which the verification process is stalled
because the application in which they are defined has unsolved dependencies to other
applications. Cleaning the ruleswait mapping simply consists in restricting its domain to
MW .

ruleswait = ruleswait|MW

3.2 Removal of an application

There is no unique solution to handle application removal in the transitive control flow
model. Before we investigate some solutions, we first provide an impact analysis of ap-
plication removal in this model in the Section 3.2.1. From this analysis, we propose three
solutions with different compromises between additional memory used and on-device
computations required to deal with application removal. These solutions are presented
by increasing additional memory required in the Sections 3.2.2, 3.2.3 and 3.2.4.
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3.2.1 Impact analysis of application removal

The removal of an application installed in a secure system (Definition 4.2.4 of the de-
liverable D6.3) cannot lead to a non-secure system. This property is obvious from the
definition of a secure system and can easily be proved by contradiction.

However, to be compliant with the incremental verification process applied at installa-
tion of new applications, the removal of an application A must put the system in the same
state as if A was never installed. Basically, removing an application A from a secure
system S = (D,A,U , δ,P) consists in rolling back to a state S ′ = (D′,A′,U ′, δ′,P ′) such
that:

1. A is removed from the list of applications installed in the system;

A′ = A \ {A}

2. A is not mapped in δ;
δ′ = δ|A\{A}

3. U ′ is recomputed as on a successful installation (see Section 3.1.1);

4. any mapping related to A is removed in the mappings rules, ruleswait and wait

ruleswait′ = ruleswait|M\MA

rules′ = rules|M\MA

wait′ = wait|A\A

5. the content of rules′, wait′, ruleswait′ and unsolved′ is restored as if only the ap-
plications in A′ were installed.

This last point is actually the most complex to achieve as it requires some information
not available in the system without re-analysis of some bytecode and/or additional infor-
mation stored on-device. Several strategies can be applied to retrieve this information.
Each strategy requires a varying amount of additional memory and computations. The
strongest difficulty is to find a solution that provides a good compromise between mem-
ory and computations while ensuring that, at least, all methods impacted by the removal
have been reconsidered.

Before we investigate different solutions to deal with application removal, it is impor-
tant to determine formally what parts of the system are impacted by the removal of an
application A. The smallest entities considered in this model are methods (Section 1.2).
Given a method A.C.m, three sets of methods can be impacted by its removal: the meth-
ods that A.C.m invokes directly or transitively, the methods that invoke A.C.m directly
or transitively, and the methods that override A.C.m. The methods invoked by A.C.m
are not actually impacted by its removal within the transitive control flow model simply
because this is part of the incremental verification process to ensure at installation that
A.C.m invokes only authorized methods according to the domain in which it is going to be
installed. However, the methods that invoke A.C.m have been verified against a security
policy that does not remain “valid” after the removal of A.C.m. If a new version of A.C.m
is installed after the removal of a version of A.C.m with a different security policy, then
it is mandatory to re-verify that all methods already installed that invoke A.C.m are still
authorized by the new security policy attached to A.C.m.
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Among the methods that invoke A.C.m, only the methods that directly invoke A.C.m
are in fact impacted because of a property of the transitive control flow model. If a method
B2.C2.m2 transitively invokes A.C.m, then there exists a method B1.C1.m1 that invokes
A.C.m directly and that is (transitively or directly) invoked by B2.C2.m2. Since appli-
cations B1 and B2 have been successfully installed in the system, rules(B2.C2.m2) ⊆
rules(B1.C1.m1) because of Lemma 4.3.2 of the deliverable D6.3. The re-verification
of rules(B1.C1.m1) ⊆ rules(A.C.m) is thus sufficient to ensure that rules(B2.C2.m2) ⊆
rules(A.C.m), and to exclude all methods that transitively invoke the method A.C.m to
be removed from the set of methods impacted this removal.

We introduce a function Ω that gives for a method the set of methods impacted by its
removal:

Ω :M−→ ℘(M)

A.C.m 7−→ {A′.C ′.m′ | A′.C ′.m′ ∈M \ {A.C.m}
∧ (A.C.m ∈ Idirect(A′.C ′.m′) ∨A′.C ′.m′ ≤ A.C.m)}

We extend this definition to applications, and state that an application A′ is impacted
by the removal of an applicationA if and only if there exists a method ofA′ that is impacted
by the removal of a method of A:

Ω : A −→ ℘(A)

A 7−→ {A′ | A′.C ′.m′ ∈ Ω(A.C.m), A′ ∈ A \ {A}, A′.C ′.m′ ∈MA′ , A.C.m ∈MA}

3.2.2 No additional memory requirement

Without any additional information stored on-device, it is necessary to re-analyze the
bytecode of some methods remaining installed after the removal of an application A.
In order to reduce as much as possible the amount of bytecode to re-analyze after A’s
removal, we assume that the system is secure before A is removed.

Relying only on control flow policies, we are able to build a set ∆A(A) of applications
that contains at least all applications having some methods to be re-analyzed when ap-
plication A is removed. A method must be re-analyzed in two cases: it invokes a shared
service of A, or it is implemented in a class that inherits a class defined by A.

Only the domains mentioned in control flow policies attached to the shared services
of A can obviously harbor applications that invoke directly or indirectly (transitively) some
shared services of A. For a secure system S = (D,A,U , δ,P) before A ∈ A is removed,
the set ∆I

A(A) of applications installed in domains from which A permits to invoke at least
one of its shared services is:

∆I
A(A) = {B | B ∈ A \ {A}, ∃A.C.m ∈ shareable(A), δ(B) ∈ rules(A.C.m)}.

This set of applications can contain applications that should not be re-analyzed be-
cause they do not invoke a shared service of A, but this cannot be determined a priori .

By definition, if an applicationB contains a classB.C ′ that inherits a classA.C defined
in A, then all methods declared in B.C ′ are necessarily attached a policy that permits
the domain δ(A) where A is installed to call it (see Lemma 4.3.2 of the deliverable D6.3).
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Using this property, we can build a set of applications that contains at least all applications
having a class that inherits a class defined in A. The set ∆<

A(A) of applications having
at least a class that implements a method attached a control flow policy which contains
δ(A) is:

∆<
A(A) = {B | B ∈ A \ {A}, ∃B.C.m ∈MB, δ(A) ∈ rules(B.C.m)}.

Remark 3.2.1 A better definition of ∆<
A(A) could be achieved using the inheritance rela-

tion ≤, but this relation is not necessarily easy to test on-device out of the verification/in-
stallation process on the contrary to control flow policies.

The set ∆A(A) of applications that contains at least all applications having some
methods to be re-analyzed is simply the union of these two set of applications.

∆A(A) = ∆I
A(A) ∪∆<

A(A)

All applications impacted by A’s removal will in this case be re-analyzed. From the
definition of Ω(A) given in the Section 3.2.1, if B ∈ Ω(A) then B 6= A and ∃B.C ′.m′ ∈
MB, ∃A.C.m ∈ MA such that A.C.m ∈ Idirect(B.C ′.m′) or B.C ′.m′ ≤ A.C.m. Since the
system is secure beforeA’s removal, ifA.C.m ∈ Idirect(B.C ′.m′) then δ(B) ∈ rules(A.C.m),
and if B.C ′.m′ ≤ A.C.m then δ(A) ∈ rules(B.C ′.m′). So in both cases B ∈ ∆A(A) by
definition, and thus Ω(A) ⊆ ∆A(A).

Since we cannot determine a priori which methods of applications in ∆A(A) need to
be re-analyzed because of a lack of available information, the set ∆M(A) of methods to
be re-analyzed contains all methods of all applications in ∆A(A).

∆M(A) =
⋃

B∈∆A(A)

MB

All methods remaining installed impacted by A’s removal will be re-analyzed. From
the definition of Ω(A), the set of methods impacted is

⋃
A.C.m∈MA

Ω(A.C.m), and if there
exists a method B.C ′.m′ in Ω(A.C.m) then B ∈ Ω(A). Since Ω(A) ⊆ ∆A(A) and
∆M(A) =

⋃
B∈∆A(A)MB then

⋃
A.C.m∈MA

Ω(A.C.m) ⊆ ∆M(A).

This solution has the advantage to consume no additional memory, but lacks of sen-
sitivity and can lead to useless re-analysis of a lot of bytecode.

3.2.3 Low additional memory

In order to refine the solution detailed in the previous section, and especially to reduce
the number of applications unnecessarily re-analyzed, we can store some information
about inter-applications dependencies.

At loading-time, a mapping revdep : A −→ ℘(A) can be used to store for each ap-
plication A the set of applications that directly invoke one of A’s shared services. Al-
gorithm 3.2.1 shows the verification algorithm modified to include the building of revdep
(lines 3 and 13). When an application A is removed from a secure system, revdep(A)
contains exactly the set of applications having some bytecode to be re-analyzed. So, to
reuse the same notations as is in the previous section, we have now for the removal of
an application A ∈ A:

∆A(A) = revdep(A)
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revdep : A 7−→ {A′ | ∃A′.C ′, ∃A.C,A′.C ′ ≤ A.C}
∪ {A′ | ∃A.C.m ∈ Idirect(A′.C ′.m′), A′.C ′.m′ ∈M}

All applications impacted by A’s removal are obviously included in revdep(A) because
its definitions is exactly the definition of Ω(A).

1: if A.C inherits A′.C ′ then
2:
3: revdep(A′)← revdep(A′) ∪ {A}
4:
5: if ∃A′.C ′.m and (rules ∪ ruleswait)(A′.C ′.m) 6⊆ rulesiA(A.C.m) then
6: return FAIL
7: else if wait(A′) 6= ∅ then
8: wait← wait[A 7→ wait(A) ∪ {A′}]
9: if unsolved(A.C.m) 6⊆ rulesiA(A.C.m) then

10: return FAIL
11: for all invoke A′.C ′.m′ bytecode do
12:
13: revdep(A′)← revdep(A′) ∪ {A}
14:
15: if A′.C ′ is already loaded then
16: if {d} ∪ rulesiA(A.C.m) 6⊆ (rules ∪ ruleswait)(A′.C ′.m′) then
17: return FAIL
18: else
19: unsolved← unsolved[A′.C ′.m′ 7→ unsolved(A′.C ′.m′) ∪ {d} ∪ rulesiA(A.C.m)]
20: wait← wait[A 7→ wait(A) ∪ {A′}]
21: return SUCCESS
Algorithm 3.2.1: Verification of the method A.C.m loaded in the domain d with inter-applications dependen-
cies analysis.

It is not possible to determine which methods of applications in ∆A(A) need to be re-
analyzed. The set ∆M(A) of methods to be re-analyzed when application A is removed
is thus:

∆M(A) =
⋃

B∈∆A(A)

MB

All methods remaining installed impacted by A’s removal will be re-analyzed, i.e.⋃
A.C.m∈MA

Ω(A.C.m) ⊆ ∆M(A), for the same reason as the one given in the previous
section.

When an application A is removed from a secure system S and after bytecode re-
analysis, there is no need to keep the content of revdep(A) on-device that can be cleaned
with the following statement.

revdep′ = revdep|A\{A}

This solution has the advantage to consume very few additional memory, exactly
d|A|/8e byte(s) for each applicationA to store the content of revdep(A) with a bit-encoding
where each bit corresponds to an application present (bit set to one) or absent (bit set
to 0) of revdep(A). Even if this solution permits to reduce the amount of bytecode to be
re-analyzed, it is not sensitive enough to select only methods that need to be re-analyzed
within applications.
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3.2.4 Large additional memory

To conclude the impact analysis of applications removal, we describe a last solution that
has the advantage to require few computations and no bytecode re-analysis, but more
memory on-device.

The idea is to apply the same kind of strategy described in the previous section but on
methods. Across installations, we can maintain inter-methods dependencies in a map-
ping revdep :M−→ ℘(M) such that:

A.C.m 7−→ {A′.C ′.m′ | ∃A′.C ′, (A.C.m ∈ Idirect(A′.C ′.m′)) ∨ (A′.C ′.m ≤ A.C.m)}.

The control flow policies of all methods remaining installed and impacted by A’s re-
moval will be re-verified because the definition of revdep is exactly the definition of Ω
given in the Section 3.2.1.

The Algorithm 3.2.2 corresponds to the incremental verification algorithm modified
(line 4 and line 14) to introduce the building of revdep.

1: if A.C inherits A′.C ′ then
2: if ∃A′.C ′.m then
3:
4: revdep(A′.C ′.m)← revdep(A′.C ′.m) ∪ {A.C.m}
5:
6: if (rules ∪ ruleswait)(A′.C ′.m) 6⊆ rulesiA(A.C.m) then
7: return FAIL
8: if wait(A′) 6= ∅ then
9: wait← wait[A 7→ wait(A) ∪ {A′}]

10: if unsolved(A.C.m) 6⊆ rulesiA(A.C.m) then
11: return FAIL
12: for all invoke A′.C ′.m′ bytecode do
13:
14: revdep(A′.C ′.m′)← revdep(A′.C ′.m′) ∪ {A.C.m}
15:
16: if A′.C ′ is already loaded then
17: if {d} ∪ rulesiA(A.C.m) 6⊆ (rules ∪ ruleswait)(A′.C ′.m′) then
18: return FAIL
19: else
20: unsolved← unsolved[A′.C ′.m′ 7→ unsolved(A′.C ′.m′) ∪ {d} ∪ rulesiA(A.C.m)]
21: wait← wait[A 7→ wait(A) ∪ {A′}]
22: return SUCCESS
Algorithm 3.2.2: Verification of the method A.C.m loaded in the domain d with inter-methods dependencies
analysis.

In case we are not interested in partial application’s installation/removal (removing one
loaded class or method), we can build revdep only between methods defined in different
applications, i.e. if A 6= A′ in Algorithm 3.2.2 (lines 4 and 14). Intra-applications depen-
dencies are indeed not needed when only complete application’s installation/removal is
considered since in this case nothing has to be checked in the removed application.

The information stored in revdep, in addition to the control flow policies stored on-
device, is sufficient to avoid any bytecode re-analysis. So, to reuse the notation of pre-
vious sections, the set ∆M(A) of methods to be re-analyzed when an application A is
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removed is:
∆M(A) = ∅

However, the content of unsolved and wait has to be updated in consequence. The
Algorithm 3.2.3 permits to reset these mappings according to the values stores in revdep.

1: for all A.C.m ∈MA do
2: for all B.C ′.m′ ∈ revdep(A.C.m) do
3: unsolved(B.C ′.m′)← unsolved(B.C ′.m′) ∪ {A.C.m}
4: wait(B) = wait(B) ∪ {A}
5: if rules(B) 6= ∅ then
6: ruleswait(B) = rules(B)
7: rules(B) = ∅

Algorithm 3.2.3: Refilling the mappings unsolved and ruleswait upon removal of an application A.

This solution to deal with application removal has the strong advantage to require no
bytecode re-analysis thanks to the additional data kept on-device. The amount of data
kept is however larger than with the solutions described previously and it can thus only
be applied if its memory overhead is suitable for the targeted system.

3.3 Removal of a domain

Removing a domain is possible only if it harbors no application. This assumption is
reasonable whatever the underlying system is. If the underlying system permits removal
of a domain while it contains some application(s), we assume that these applications are
removed using one of the techniques described in the previous section.

To permit the removal of a domainD ∈ D in a system S = (D,A,U , δ,P), the following
condition must hold:

6 ∃A ∈ A, δ(A) = D

Under this assumption before removal of a domain D, no additional care is needed
for the transitive control flow model.

removeDomain(D,A,U , δ,P) = (D \ {D},A,U , δ,P)

3.4 Modifications of the domains hierarchy

In the transitive control flow model, domains are seen as individual and independent
containers of applications, without any specific behavior between domains having hier-
archical links (father domain, sub-domains or brother domain). Changes to domains
hierarchy, such as extraditing a domain (and of course the applications it harbors) else-
where in the domains hierarchy, have thus no impact on this model and do not require
any re-verification.

Nevertheless, as already depicted in the deliverable D6.3, it is crucial that entry (i.e.
installation) of an application in a domain is submitted to access control rules of the un-
derlying system that cannot be bypassed (see Chapter 6 for details on GlobalPlatform).
In case an application is extradited to another domain, it is mandatory to re-verify com-
pletely its bytecode, exactly as if it was newly installed, to ensure that the methods it
invokes can be invoked from its new domain.
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3.5 Modifications of control flow policies

The weakening of control flow policies has already been described in the Section 4.3.2
of the deliverable D6.3. We now present how to deal with restrictions of control flow
policies of already installed applications. We describe for each solution provided for the
application removal problem described in the previous section a corresponding solution
for the problem of restricting control flow policies.

Restricting the control flow policy of a method has exactly the same impact on the
system as removing a method described in the Section 3.2.1 in terms of re-verification
required. Indeed, restricting the control flow policy of a method is equivalent to replace
(remove and then install) the method by itself but with a different security policy. Proofs
that all impacted applications (or methods) are re-analyzed are not provided because
they can be simply derived from the ones provided for application removal.

3.5.1 No additional memory requirement

Given a set M of methods whose control flow policies have been restricted, ∆I
A(M) is the

set of applications that can contain some methods that need to be re-analyzed because
of a possible call to a method of M .

∆I
A(M) = {B | B ∈ A, δ(B) ∈

⋃
A.C.m∈M

rules(A.C.m)}

For the same set M of methods whose control flow policies have been restricted,
∆<

A(M) is the set of applications that can contain some methods that need to be re-
analyzed because they can override a method of M .

∆<
A(M) = {B | B ∈ A, ∃A.C.m ∈M, δ(A) ∈ rules(B.C.m)}

Remark 3.5.1 A better definition of ∆<
A(M) could be achieved using the inheritance rela-

tion ≤, but this relation is not necessarily easy to test on-device out of the verification/in-
stallation process on the contrary to control flow policies.

The set ∆A(M) of applications that contains at least all applications having some
methods to be re-analyzed is simply the union of these two set of applications.

∆A(M) = ∆I
A(A) ∪∆<

A(A)

Since with this solution it is not possible to determine which methods of these appli-
cations need to be re-analyzed, the set ∆M(M) of methods to be re-analyzed when the
control flow policies of the methods of M have been restricted is simply the union of all
methods of applications in ∆A(M).

∆M(M) =
⋃

B∈∆A(M)

MB

3.5.2 Low additional memory

The revdep mapping introduced in the Section 3.2.3 can be reused to determine the set
∆A(M) of applications to be re-analyzed given a set M of methods whose control flow
policies have been restricted.

∆A(M) =
⋃

A.C.m∈M
revdep(A)
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Once more, it is not possible with this solution to determine which methods of these
applications need to be re-analyzed, so all their methods need to be re-analyzed.

∆M(M) =
⋃

B∈∆A(M)

MB

It is important to remark that in the case of restricted control flow policies the mapping
revdep does not need to be updated, on the contrary to application removal.

3.5.3 Large additional memory

Once more we reuse a mapping introduced in the analogous solution for application re-
moval to determine the set of methods to be-reanalyzed when control flow policies of
some methods are restricted. The mapping revdep introduced in the Section 3.2.4 actu-
ally contains necessary information to avoid bytecode re-analysis. The Algorithm 3.5.1
simply describes the re-verification of control flow policies for methods impacted by the
restriction of control flow policies attached to methods of M . To be correct this algorithm
must be applied in a transactional way, i.e. if it fails the previous control flow policies
attached to methods of M must be restored.

1: for all A.C.m of M do
2: for all A′.C ′.m′ ∈ revdep(A.C.m) do
3: if rules(A′.C ′.m′) 6⊆ rules(A.C.m) then
4: return FAIL
5: return SUCCESS
Algorithm 3.5.1: Verification of the consistency when restricting control flow policies of methods of M .

3.6 Conclusions

In this chapter we completed the transitive control flow model introduced in the Chap-
ter 4 of the deliverable D6.3 [11] to permit application removal and update to the security
policy of an installed application. Since dealing with these new changes requires addi-
tional resources on the system, we proposed several solutions with variable compromise
between overhead memory used and computations. For each proposed solution, we
showed that no false negative can be produced by later installations of applications, and
tried to minimize as much as possible the number of false positives.
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4. Global Policy

The global policy model, introduced in the Chapter 5 of the deliverable D6.3, aims at
detecting sequences of method calls that are forbidden by the system. This model only
deals for now with addition of new applications. Before we introduce application removal
and security policy updates in this model, we first provide in the Section 4.1 a correction
of the verification Algorithm 5.6.1 from the deliverable D6.3 because it is unfortunately
not a correct implementation of the theoretical model. Then, we build on the definitions
and algorithms introduced in the Chapter 5 of the deliverable D6.3 to enrich the model
with application removal in the Section 4.2, and modification of the global security policy
in the Section 4.3. On the contrary to the transitive control flow model described in the
previous chapter, the global policy model does not use on the notion of domains so it is
not impacted at all by the relocation of an application into another domain nor to changes
of the domains hierarchy.

4.1 Amendments to the existing implementation

The Algorithm 5.6.1 of the deliverable D6.3 for on-device verification of proof annotations
has some drawbacks that can cause a method (a class, an application) to be accepted
while it must not be accepted according to the theoretical model. In addition, we also
clarify the way the security policy is recorded on-device as well as initial values in footprint
repositories, and make some modifications to avoid the possible rejection of a class (an
application) with dead code. The Algorithm 4.1.1 replaces the Algorithm 5.6.1 of the
deliverable D6.3 and includes all the following modifications:

• line 2: the believed footprint of A′.C ′.m′ is dropped only if there exists a verified
footprint in R for A′.C ′.m′;

• line 5: if there is no verified footprint in R for A′.C ′.m′, then the believed footprint in
Rtmp for A′.C ′.m′ (> by default) is restricted to its common parts with the footprint
FA′.C′.m′ coming with the application currently verified; since this restriction can
only remove factors contributing to invalid traces, it cannot cause methods already
loaded and successfully verified with the previous footprint to be rejected if they
were re-verified with the restricted footprint;

• line 13: the initial footprint Finit of a method A.C.m ∈ Σ now includes its expected
contribution according to the automaton of forbidden sequences of the system:

Finit = {(si, sj) | ζ(si, A.C.m) = sj ∨ (ζ(si, A
′.C ′.m′) = sj ∧A.C.m ≤ A′.C ′.m′)}
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• line 15: if the address of the current instruction is the point of a branching instruc-
tion, then the current footprint Ftmp must be included in the footprint annotation
proof [A.C.m][i] at this point;

• line 18: the current footprint is replaced by the footprint annotation proof [A.C.m][i]
that can be more complete than the one currently computed, especially if the ad-
dress of the current instruction is the point of more than one branching instructions;
indeed this case should require to compute the union of footprints coming from all
possible paths, which is not computable on-device;

• line 20: in order to deal with dead code, the current footprint is reset if the current
instruction is a non-conditional branching instruction to an address other than i+ 1,
the next bytecode instruction;

• line 22: if PA.C.m[i] is a bytecode instruction branching at address a, then it must
exists a proof annotation for the footprint at position a otherwise the verification must
fail;

• line 34: R[A.C.m] = FA.C.m and Rtmp [A.C.m] = ⊥.

The system starts with no application installed and repositories initialized such that:

• the repository R of verified methods footprints is empty: we write R[m] = ⊥ for all
methods m;

• the temporary repository Rtmp of methods footprints is empty: we write Rtmp [m] =
> for all methods m.

In this initial state, no method has a verified footprint so each method is assigned the
encoded empty footprint ⊥ (all bits set to zero). On the contrary, each method is assigned
in the temporary repository the fully saturated footprint denoted z in the formal model and
encoded by the value > (all bits are set to one). This default value denotes the “worst”
possible footprint of method; this assumption is mandatory to be able to reject a method
during its verification if it invokes another method for which no footprint is known in R or
in Rtmp .

4.2 Removal of an application

The global policy model implies off-device computations that cannot be done on-device
because of the low resources available. Currently, proof annotations computed off-device
are dropped after the verification process at loading-time because bytecode in never re-
verified. Without these proof-annotations no re-verification is possible on-device, so the
amount of practicable solutions for dealing with application removal is quite limited.

The Section 4.2.1 is an impact analysis of application removal in the global policy
model. After this analysis we describe two solutions to deal with application removal in
the Section 4.2.2 and in the Section 4.2.3.

4.2.1 Impact analysis of application removal

As it has already be described in the Section 3.2.1, the removal of an application installed
in a secure system cannot lead to a non-secure system. To be compliant with the incre-
mental verification process, it is however needed to reset the system in a coherent state
for later installations.
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1: for all believed footprint FA′.C′.m′ in the class file do
2: if R[A′.C ′.m′] 6= ⊥ then
3: drop FA′.C′.m′

4: else
5: Rtmp [A′.C ′.m′] = Rtmp [A′.C ′.m′]&FA′.C′.m′

6: for all footprint FA.C.m in the class file do
7: if nonvalid(FA.C.m) or FA.C.m 6⊆ Rtmp [A.C.m] then
8: return FAIL
9: if A.C.m ≤ A′.C ′.m′ and FA.C.m 6⊆ FA′.C′.m then

10: return FAIL
11: read proof annotations in array proof
12: for all method A.C.m defined in class C do
13: Ftmp = Finit

14: for all bytecode i from 0 to end do
15: if ∃proof [A.C.m][i] then
16: if Ftmp 6⊆ proof [A.C.m][i] then
17: return FAIL
18: Ftmp = proof [A.C.m][i]
19: if PA.C.m[i] ∈ branching bytecodes to address a then
20: if PA.C.m[i] ∈ bytecodes branching systematically to an address 6= i+ 1 then
21: Ftmp = ⊥
22: if 6 ∃proof [A.C.m][a] or Ftmp 6⊆ proof [A.C.m][a] then
23: return FAIL
24: else if PA.C.m[i] = invoke A′.C ′.m′ then
25: if R[A′.C ′.m′] 6= ⊥ then
26: Ftmp = compose(Ftmp , R[A′.C ′.m′])
27: else
28: Ftmp = compose(Ftmp , Rtmp [A′.C ′.m′])
29: else if PA.C.m[i] = return and Ftmp 6⊆ FA.C.m then
30: return FAIL
31: if nonvalid(Ftmp) then
32: return FAIL
33: drop proof
34: add all FA.C.m to R and drop all Rtmp [A.C.m]
35: return SUCCESS

Algorithm 4.1.1: Loading of a class C of application A.
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Basically, removing an application A from a secure system S = (D,A,U , δ,P) with a
global policy G, a repository of verified footprints R and a repository of believed footprints
Rtmp consists in rolling back to a state S ′ = (D′,A′,U ′, δ′,P ′) with the same global policy
G, a repository of verified footprints R′ and a repository of believed footprints R′

tmp such
that:

1. A is removed from the list of applications installed in the system;

A′ = A \ {A}

2. A is not mapped in δ;
δ′ = δ|A\{A}

3. U ′ is recomputed as on a successful installation (see Section 3.1.1);

4. any footprint related to A is removed from the repository R of verified footprints;

R′ = R|M\MA

5. the content of the repositories R and R′
tmp is restored as if only the applications in

A′ were installed.

Resetting the content of the two repositories is not trivial to achieve as it requires
some information not available in the system without additional information stored on-
device, and/or re-verification of some bytecode (if proof annotations are permanently
kept on-device).

As depicted in the Algorithm 4.1.1, the footprint of a method is compositionally veri-
fied at installation on-device using the verified footprints of invoked methods if they are
available, or the intersection of believed footprints brought by applications themselves
otherwise. If we consider the removal of a method A.C.m, only methods that override or
invoke A.C.m are obviously impacted by the removal of A.C.m. However, not only the
methods that directly invoke A.C.m can be impacted by its removal. If a method B1.C1.m1

directly invokes A.C.m, then the footprint of B1.C1.m1 can be impacted if a new version
of A.C.m is installed. But it is not mandatory that the footprint of B1.C1.m1 will change
after this update of the footprint of A.C.m, and so recursively for the footprints of methods
that invoke B1.C1.m1.

In this context, it is only possible to give an over-approximation for the set of methods
impacted by the removal of a method A.C.m that is the set of all methods that directly
or transitively invoke A.C.m or override A.C.m. To reuse the notations introduced in
the Section 3.2.1, we introduce a function Ω that gives for a method the set of methods
impacted by its removal:

Ω :M−→ ℘(M)

A.C.m 7−→ {A′.C ′.m′ | A′.C ′.m′ ∈M \ {A.C.m}
∧ (A.C.m ∈ I(A′.C ′.m′) ∨A′.C ′.m′ ≤ A.C.m)}

We extend this definition to applications, and state that an application A′ is impacted
by the removal of an applicationA if and only if there exists a method ofA′ that is impacted
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by the removal of a method of A:

Ω : A −→ ℘(A)

A 7−→ {A′ | A′.C ′.m′ ∈ Ω(A.C.m), A′ ∈ A \ {A}, A′.C ′.m′ ∈MA′ , A.C.m ∈MA}

4.2.2 Footprints ghosts

Let us consider the removal of an application A having a method A.C.m, and an applica-
tion B with a method B.C ′.m′ that invokes A.C.m remaining installed in the system after
A’s removal.

If A was installed before B, then the verified footprint of A.C.m has been used to
verify the footprint of B.C ′.m′. When A is removed, the verified footprints of A’s methods
can obviously not be kept in the repository R of verified footprints. To guarantee that
the verified footprint of B.C ′.m′ remains valid after A’s removal, it is just necessary to
store the verified footprint of A.C.m before A’s removal as a new believed footprint of this
method in Rtmp . By construction, this will ensure upon a later installation of A.C.m that
its attached footprint will be included in the footprint Rtmp [A.C.m] used to verify B.C ′.m′,
so that no re-verification of B.C ′.m′ is needed.

If A was installed after B, then B.C ′.m′ has been verified with a believed footprint
of A.C.m. This believed footprint of A.C.m was in this case the intersection of all the
believed footprints of A.C.m brought by applications known when B was verified. Since
A.C.m has been successfully installed in the system, it implies that the verified footprint
of A.C.m was included in its believed footprint. Upon A’s removal, the verified footprint
of A.C.m can thus be transferred from R to Rtmp in the exact the same way as described
previously, and with the same guarantee that the verified footprint of B.C.m remains valid
without re-verification on installation of a new version of A.C.m.

Actually, in both cases only the footprints of A’s shared methods need to be trans-
ferred from R to Rtmp . Since by hypothesis applications can interact only through shared
methods, there cannot exist invocation of a non-shared method of A from B. Stored in
Rtmp , the footprints of removed methods act as ghosts in the exact same way as the
believed footprints of methods not yet verified in the original algorithm.

The impact analysis of application removal in this model given in the Section 4.2.1
states that any method that (directly or transitively) invokes some method to be removed
is potentially impacted by this removal. However, footprints ghosts permit to limit the
impact of removal thanks to a constraint applied to new footprints of a previously installed
method. If a method A.C.m is removed, we ensure that its removed footprint will remain
a correct over-approximation of any new possible footprint for this method and so that
any previously verified footprint of a method that (directly or transitively) invokes A.C.m
remains a valid over-approximation of its true footprint.

Concretely, the Algorithm 4.2.1 achieves the necessary modifications on the reposi-
tories upon the removal on an application A. This solution could be slightly improved by
keeping only footprints ghosts of shared methods invoked by other applications, which
implies to attach an invocation counter to each shared method and to maintain these
counters across installations (to increment the counters) and removals (to decrement the
counters).

Using footprints ghosts to deal with application removal has the strong advantage to
require no additional memory or bytecode re-verification. However, it also suffers from a
strong drawback: once a shared method is loaded in the system with its verified footprint,
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1: for all A.C.m do
2: if A.C.m ∈ shareable(A) then
3: Rtmp [A.C.m] = R[A.C.m]
4: R[A.C.m] = ⊥

Algorithm 4.2.1: Creation of footprints ghosts upon the removal of an application A.

this footprint can be only restricted during the rest of the system’s life-cycle, i.e. no new
version of the method can have a behavior that involves more factors (left, regular or right
factors) than the one previously installed.

4.2.3 Relying only on believed footprints

To cope with the main limitation of footprints ghosts, another solution is to rely only on
believed footprints during verification rather than on verified footprints (if they are known).

If an application A is not installed, it may exist believed footprints for A’s methods in
Rtmp brought by other installed applications that invoke A’s methods. Once A is success-
fully verified and installed, all the believed footprints of A’s methods are removed from
the temporary repository Rtmp , and the verified footprints of A’s methods are stored in
R. At this stage it is thus not possible to restore the believed signature of A’s methods
if A is removed. Moreover, if A invokes some shared methods of other applications not
yet installed, then the believed footprints of these methods have been updated to inter-
sect with the believed footprints brought by A. If A is removed, the believed footprints of
these methods can also not be restored. To achieve the reset of the temporary repository
when A is remove, it is mandatory to keep all the individual believed footprints of shared
methods brought by applications until there are uninstalled and not only an aggregation
of these footprints.

The Algorithm 4.2.2 corresponds to the verification algorithm modified to achieve this
solution. Concretely, the modifications are the followings. A new repository Frestore is
defined to gather the collection of believed footprints coming with each application. We
choose to still maintain Rtmp in a incremental way (line 4) to avoid multiple comparisons
(line 6) with all believed footprints now stored in Frestore . However, Rtmp can be removed
to reduce memory requirements if necessary, which will increase the number of required
comparisons. Indeed, in case Rtmp is removed, each expression of the form FA.C.m 6⊆
Rtmp [A.C.m] has to be replaced by its equivalent: ∃A ∈ A, FA.C.m 6⊆ Frestore [A.C.m][A].

Composition is not done with verified footprints anymore but with the believed ones
brought on by the application itself. Actually, because the verified footprint of a method
A.C.m can vary across installations and removals of applications, it is mandatory to en-
sure that the footprints of A.C.m used during the verification of other methods will remain
some valid over-approximations of the verified footprint of A.C.m.

Upon removal of an application A, the believed footprints of the external methods
invoked by A must be restored. This last operation requires to recompute the believed
footprints according to the collection of believed footprints of all external methods brought
by applications remaining installed, as depicted in the Algorithm 4.2.3.

Finally, the removal of an applicationAmust reset the verified footprint of each method
of A to its default value ⊥ in R:

∀A.C.m,R[A.C.m] = ⊥.
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1: for all believed footprint FA′.C′.m′ in the class file do
2: if R[A′.C ′.m′] 6⊆ FA′.C′.m′ then
3: return FAIL
4: Rtmp [A′.C ′.m′] = Rtmp [A′.C ′.m′]&FA′.C′.m′

5: for all footprint FA.C.m in the class file do
6: if nonvalid(FA.C.m) or FA.C.m 6⊆ Rtmp [A.C.m] then
7: return FAIL
8: if A.C.m ≤ A′.C ′.m′ and FA.C.m 6⊆ FA′.C′.m then
9: return FAIL

10: read proof annotations in array proof
11: for all method A.C.m defined in class C do
12: Ftmp = Finit

13: for all bytecode i from 0 to end do
14: if ∃proof [A.C.m][i] then
15: if Ftmp 6⊆ proof [A.C.m][i] then
16: return FAIL
17: Ftmp = proof [A.C.m][i]
18: if PA.C.m[i] ∈ branching bytecodes to address a then
19: if PA.C.m[i] ∈ bytecodes branching systematically to an address 6= i+ 1 then
20: Ftmp = ⊥
21: if 6 ∃proof [A.C.m][a] or Ftmp 6⊆ proof [A.C.m][a] then
22: return FAIL
23: else if PA.C.m[i] = invoke A′.C ′.m′ then
24: Ftmp = compose(Ftmp , FA′.C′.m′)
25: else if PA.C.m[i] = return and Ftmp 6⊆ FA.C.m then
26: return FAIL
27: if nonvalid(Ftmp) then
28: return FAIL
29: drop proof
30: add all FA.C.m to R
31: store each FA′.C′.m′ in Frestore [A′.C ′.m′][A]
32: return SUCCESS

Algorithm 4.2.2: Loading of a class C of application A.

1: for all Frestore [A.C.m] do
2: Rtmp [A.C.m] = >
3: for all A′ ∈ A do
4: Rtmp [A.C.m] = Rtmp [A.C.m]&Frestore [A.C.m][A′]

Algorithm 4.2.3: Rollback after the removal of an application.
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4.3 Modification of the security policy

A security policy in this model is monolithic in the sense that it consists in one security
graph of forbidden method calls for the whole system. The security policy is currently
setup before any application is installed in the system. This choice has several conse-
quences on the practicable solutions to deal with modifications of the security policy.

From theoretical point of view, any modification to the global security policy G =
(Σ, S, s0, ζ, sF ) (Definition 5.3.1 of the deliverable D6.3) invalidates some footprints com-
puted with the previous policy as soon as the language L(G) is modified. For instance, if
a label m is replaced by a label m′ in a transition from a state s1 to a state s2 in ζ, then
the footprint of any method that involves this transition, before or after the replacement of
m by m′, becomes invalid. However, some footprints also become invalid even if L(G) is
not modified. For instance, if a method m is added to Σ or removed from Σ then the foot-
print of any method that invokes m is invalid because the projection onto Σ of its possible
execution traces is not valid anymore (Definition 5.4.2 of the deliverable D6.3).

Methods footprints are compositionally computed (Proposition 5.4.9 of the deliver-
able D6.3) so footprints computed using footprints now marked as invalid can also be-
come invalid. Even if this domino effect is not systematic as it depends on the content
of methods themselves, any footprint that recursively depends on an invalid footprint can
also potentially become invalid. The impact of a modification to the security policy of a
system is thus equivalent to the one provided in the Section 4.2.1 in case of application
removal in the global policy model.

Methods footprints are computed off-device and are then bitwise encoded (Section 5.6.2
of the deliverable D6.3) in order to minimize their size for on-device verification and stor-
age. The bitwise encoding of footprints is directly derived from the security policy graph
G because each bit of the encoded footprint corresponds to a possible transition in G. So
all footprints stored on-device have at least to be re-encoded as soon as the topology of
G changes.

All the issues previously highlighted strongly reduce the scope of practicable solutions
for dealing with modifications of the security policy in the global policy model. In fact,
in case the security policy of a system is modified, the only solution is to replay the
verification of all its code according to new footprints and proof annotations from scratch,
i.e. with emptied repositories of footprints and all applications marked as non selectable.
This process must be achieved in a transactional way to ensure that the system remains
in a secure state, so if the verification process fails at some point previous footprints and
security policy must be restored.

4.4 Conclusions

In this chapter we first gave some corrections to the original model introduced in the
Chapter 5 of the deliverable D6.3 [11], and then to provide necessary methods to permit
application removal and update to the security policy of an installed application. The main
difficulty we had to face was the monolithic security policy stored on-device that strongly
restricts the number of practicable solutions for application removal but especially for
security policy updates. We did not propose any solution where proof annotations are
kept on-device because of the large memory overhead it de facto represents, even though
it does not solve the problem we encountered with policy updates.
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For each solution proposed for application removal, we showed that no false nega-
tive can be produced by later installations of applications. Using footprints ghosts has
the strong advantage to require very few additional memory, but it also has the strong
disadvantage to create a potentially large number of false positives which is not a de-
sired feature for lifelong evolving systems. Relying only on believed footprints actually
copes with this drawback using some additional memory for storing believed footprints
collections. The global policy model relying only on believed footprints constitutes a very
promising approach to enhance some security aspects in small open devices.
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5. Non-interference

The non-interference model for open systems based on GlobalPlatform, or at least using
the same concept of domains, was introduced in the Chapter 6 of the deliverable D6.3 [11].
The goal of this model is to verify information flow in terms of data in order to ensure data
confidentiality. The non-interference model is two-fold: on one hand the flow signatures
of methods computed off-device by the STAN tool and verified on-device at loading-time,
and on the other hand the inter-domain sharing policy of intra-domain secret data. In
the deliverable D6.3, only installation of new applications was described, not application
removal nor modifications of the security policy. In this chapter we complete the non-
interference model to permit such changes. We first describe in the Section 5.1 how to
deal with removal of an application, and in the Section 5.2 with the removal of a domain.
Then we describe in the Section 5.3 how to deal with modifications of on-device domains
hierarchy, and finally in the Section 5.4 how to deal with modifications of the two-fold
security policy of this model.

5.1 Removal of an application

The on-device verification algorithm of flow signatures is highly similar to the on-device
verification of methods footprints in the global policy model described in the Chapter 4
of this deliverable. Both algorithms rely on two repositories of flow signatures/methods
footprints, a first one for verified signatures/footprints and a second one for believed sig-
natures/footprints. These repositories are maintained in the exact same way in the two
models, so the solutions described in the Section 4.2 for dealing with application removal
in the global policy model can also be applied to the non-interference model.

The inter-domain sharing policy is not impacted at all by the application removal (or
installation), so it remains unchanged when an application is removed (or installed).

5.2 Removal of a domain

We assume that a domain can be removed from the system if and only if it harbors no
application, and that this assumption is checked by the underlying subsystem. If the
underlying system permits removal of a domain while it contains some application(s), we
assume that these applications are removed using one of the techniques described in the
previous section.

Concretely, removing a domain has no impact in this model and can be done without
any specific treatment. However, in order to save some memory, one may want to also re-
move the non-interference policy rule attached to the removed domain. This operation is
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straightforward as it simply consists in removing from the dataflow array of encoded non-
interference policy rules (Section 6.3.1 of the deliverable D6.3) the line and the column
corresponding to its encoded non-interference policy rule.

5.3 Modifications of a domains hierarchy

The non-interference policy of a system strongly depends on its domains hierarchy (Defi-
nition 6.2.4 of the deliverable D6.3). To simplify the management of non-interference pol-
icy rules on-device, inter-domain flows of secret data authorized by the non-interference
security policy of the system are precomputed for a given hierarchy of domains and en-
coded into a two dimensional array of bits dataflow of size n if the system can support
up to n domains.

In the non-interference model, extraditing a domain elsewhere in the hierarchy of
domains has the same impact as modifying the non-interference policy of the system.
For this reason, the process described in the Section 5.4.2 for dealing with modifications
of the non-interference policy of a system can also be applied for dealing with extradition
of a domain.

In case an application is extraded to another domain, we proceed in the exact same
way as in the global policy model. It is actually mandatory to check all flow signatures of
methods installed in the system, but not the adequation between flow signatures and the
bytecode since neither the bytecode nor the flow signatures have changed.

5.4 Modifications of the security policy

As the non-interference model itself, the security policy is also two-fold. Secret attributes
of each class of each application are defined off-device to permit computation of methods
signatures by the STAN tool before it embeds them in the corresponding bytecode. When
an application is installed on-device in some domain, the system first verifies that sig-
natures of the application’s methods are valid, and then verifies that the new application
does not create any illicit flow of data between domains according to its inter-domain se-
curity policy. Evolution of the “security policy” can thus occur at two levels: modifications
of the secret attributes of a class, and inter-domain sharing policy.

5.4.1 Modifications of per-class secret attributes

The computation of the flow signature of a method by the STAN tool requires to define
which attributes of classes are secret, the others being public by default. This label as-
signed to attributes of classes may be updated as an application evolves, so it is manda-
tory to provide a way to update the flow signatures of methods already loaded on-device.

On the contrary to the global policy model where it is not easy to update methods foot-
prints without a complete re-verification of all methods because the policy is monolithic
and system-centric, it is easy to provide an incremental solution in this model because
the definition of secret attributes is independent from one class to another.

Changing the flow signatures of a bunch of methods has of course some impact on
other parts of the system. The set of methods impacted by the modification of the flow
signature of a method is in fact equivalent to the set of methods impacted by its removal,
so as for the footprints of methods in the global policy model. As these models rely on
the same techniques (compositional off-device computation and on-device verification
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according to proof annotations), the impact of modifying the flow signature of a method is
equivalent from the theoretical point of view to the one provided for the modification of a
footprint in the global policy model described in the Section 4.3. Nevertheless, since the
definition of secret attributes is made class per class independently, an efficient manner
of updating flow signatures can be reached in practice on the contrary to the complete
re-verification of all methods mandatory in the global policy model.

Concretely, to update the new flow signatures computed off-device for a class whose
definition of secret attributes is updated, we first remove all its methods from the system
(not the code in fact but only flow signatures of its methods) using one of the solutions
described in the previous section. Then we just have to replay the verification of its code
according to newly updated proof annotations and flow signatures of its methods. In order
not to break the system upon verification failure of the new flow signatures, this process
must be conducted in a transactional way: if the verification of the new signatures fails
then previous signatures must are restored.

5.4.2 Modifications of non-interference policy of a system

Changing only the non-interference policy rules of a system (Definition 6.2.4 of the de-
liverable D6.3) does not impact flow signatures computation, so it does not require any
code re-verification. Upon a change of non-interference policy rules, only re-verification
of some flow signatures of methods already installed is needed.

A non-interference policy rule (Definition 6.2.2 of the deliverable D6.3) is a function
assigned to a domain that gives a set of domains authorized to acquire its secret data
according to the current domains hierarchy of the system (Definition 6.2.1 of the deliver-
able D6.3). A system is said secure if all installed methods are secure (Definition 6.2.5 of
the deliverable D6.3) with respect to the non-interference policy rules of the system.

Because the non-interference policy of a system is precomputed and encoded in the
array dataflow, changing some non-interference policy rules consists in re-encoding the
new non-interference policy rules according to the hierarchy of domains in the system,
and then to verify that already installed methods are secure according to this new policy.
Flow signatures of methods are clearly not to be re-verified against the corresponding
bytecode because neither the bytecode nor the flow signatures have changed.

Actually, all flow signatures must be checked upon a change of non-interference pol-
icy rules only if there exists a previously authorized flow between two domains that is
now forbidden. Indeed, if all inter-domain flows previously authorized are still authorized
after the modification of the non-interference policy rules, then the new security policy is
more permissive so the security of the system is obviously preserved. If a re-verification
of flow signatures against the new security policy is required, it must be done on all meth-
ods installed in the system according to the rule depicted in the Definition 6.2.5 of the
deliverable D6.3. The complete re-verification process must of course be conducted in
a transactional way not to put the system in an incoherent and insecure state, i.e. if the
re-verification of at least one flow signature fails with the new non-interference policy rule
then the old one must be restored.

5.5 Conclusions

In this chapter we completed the non-interference model introduced in the Chapter 6
of the deliverable D6.3 to permit application removal, modifications of the security pol-
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icy and modification of the domains hierarchy of a system. Since the non-interference
model is strongly ressembling to the global policy model described in the previous chap-
ter, we build on the results achieved for the global policy model to introduce application
removal in the non-interference model. This is fortunately not the case for modifications
of the security policy in the non-interference model. The problems encountered with the
global policy model to deal with such kind of modification are caused by its monolithic
and system-centric security policy, which is not the case for the non-interference model
where methods flow signatures computed off-device are independent of the inter-domain
sharing policy of the system. The solutions we propose to deal with changes are free of
false negative, and minimize as much as possible the number of false positives.
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6. Integration with Testing Work Package

This chapter describes a connection between Verification (WP6) and Testing (WP7) work
packages of SecureChange project. WP6 and WP7 both work on information protection
security property of POPS case study and their collaboration is therefore instantiated
on this case study. In this chapter we discuss contribution of each work package for
information protection property. Also we provide descriptions of attack scenarios that
could break information protection. We then demonstrate how WP6 and WP7 together
provide protection against these attack scenarios and the advantages of connection.

6.1 POPS case study reminder

We do not provide a full description of POPS case study, which can be found in the
deliverable D1.1 [5], the deliverable D1.2 [3] and the Case Study Properties document
[4]. We give a reminder of information protection security property identified for POPS
case study. Following is a citation from [3, Sec. 5.2]. This property can be decomposed
in two parts:

• Information protection by access control: Any command received by the card
must respect the card and applet life-cycle. Its means that any command received
in a state s leads to a state s’ and the resulting transition from s to s’ is correct w.r.t.
the specifications.

• Information protection by flow control: The applications on the card must be
“isolated” (segregation), that means no illegal access to the data from one applica-
tion to another. In order to enforce isolation, several security policies are described
and assumed to be implemented on the card, like the Java Card firewall (access
control implemented by the virtual machine) or the security domains of GP (key iso-
lation relying on the underlying Java Card firewall and the GP OPEN). Therefore,
some properties must be verified, when an applet is added on the card, like the
consistency of the security domain hierarchy, the non-violation of the information
flow policy implemented on the card, etc.

There are two change requirements that are identified for POPS case study.
Specification evolution: An UICC card embeds a component called the card man-

ager, implemented accordingly to GlobalPlatform specifications v2.1. This card compo-
nent has been extensively verified and tested. The GlobalPlatform specification [12] has
been enhanced and extended and v2.2 has been issued. The card manager software
component has been updated and extended against this new version. For simplicity rea-
son, we restrict the 2.2 scope to the UICC configuration. Goal: prove/demonstrate/test
that the security properties are still preserved.
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Software update: The certified UICC card is deployed in the field. The mobile oper-
ator, owner of the card, has a new partner, a bank. He loads a new security domain (a
Java Card application) on the UICC (card) using an OTA mechanism. This bank will have
the delegated management privilege from the Mobile Network Operator to manage its ap-
plications in a confidential way. In particular, the bank will use its security domain to load
an e-purse on the card. Goal: prove/demonstrate/test that the new application preserves
(does not break) the consistency of the existing and implemented security policies.

Specification evolution and Software update are change scenarios and information
protection property has to be preserved under these change scenarios.

6.2 Verification Work Package (WP6)

WP6 provides two types of verification techniques: development-time and run-time (or on-
device). Development-time verification techniques for POPS case study are dedicated to
Denial of Service security property and are out of scope of the integration.

On-device verification techniques are focusing on inter-application communications.
For POPS case study WP6 has provided the following techniques: direct control flow ver-
ification, transitive control flow verification, global policy verification and non-interference
verification. Below we specify briefly each of these techniques.

Direct control flow verification: This technique is based on Security-by-Contract ap-
proach and uses the fact that on Java Card applications can interact only through spe-
cially defined Shareable interfaces. Each application obtains a contract that specifies
methods of shared interfaces that this application provides to and calls from other appli-
cations, desired security policy on usage of its services and functionally necessary ser-
vices. This contract is verified on device to be compliant with the security policy provided
by all the stakeholders together.

Transitive control flow: This approach provides an on-device verification of applet
collusions absence. That is, when one applet can invoke methods of other applets not
only directly, but also through some malicious or buggy applets’ methods.

Global policy: This approach allows enforcing an on-device policy that is global i.e. all
applets on the card should obey it. This policy expresses forbidden sequences of method
invocations.

Non-interference: This technique improves information flow (non-interference) on-
device verification by addition of specific information flow policies describing allowed and
forbidden data exchange between security domains on GlobalPlatform.

The verification process is executed during the installation (or update) of an applica-
tion. The verifier analyzes the bytecode of the applet in order to capture the details of in-
formation exchange (calls to other applets’ methods, methods of the applet implementing
shareable interfaces, possibly details on information exchange between variables) and
checks if these details are compliant with the security policy of the smart card system.

Specific details of these techniques can be found in the deliverable D6.3 [11] and
the current deliverable. Thus, main research objective of WP6 (on-device) is information
protection (by flow control) property verification in a software update change scenario (for
POPS case study).
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6.3 Testing Work Package (WP7)

For POPS case study, one of research objectives of WP7 is to validate information pro-
tection by access control and by flow control verification during specification evolution
change scenario. WP7 focuses on access control verification (by testing), ensuring that
protected information cannot be accessed without acquiring specific rights. Correct-
ness of access control implementation (with respect to GlobalPlatform specification) is
achieved by two following kinds of tests:

• tests focusing on application with correct access rights;

• tests focusing on application without access rights.

In the second category, WP7 has also two types of tests: tests based on applications
that never had access rights and tests based on applications that have lost access rights.

WP7 provides tests to validate the access control to the specific security services
provided by a security domain. In particular, on GlobalPlatform an application can only
communicate with the external world through its associated security domain.

WP7 also provides tests to validate the access control for association and extradition
processes. WP7 ensures that an application (or a security domain) cannot be associ-
ated with a security domain without specific rights that are expressed as security domain
owner’s cryptographic keys or GP-specific privileges. This is a part of verification of the
security domains hierarchy consistency that is required for information protection prop-
erty.

Another direction of WP7 work is testing correctness of application installation pro-
cess. The test model takes into account all behaviors of the install command:

• Nominal case if status word = 9000;

• Error case: more than 100 error cases are modeled in the test model by 11 status
words extracted from the GP specification decomposed into 4 dedicated cases on
install command [12, Sec. 11.5.3.2] and 7 general error cases [12, Sec. 11.1.3].

We note that WP7 does not provide full testing of correctness of smart card platform
implementation as it is not in the scope of the project. WP7 validates the implementation
with respect to some part of GP specification.

Details of the testing techniques can be found in the deliverables D7.1 [7], D7.2 [6]
and D7.3 [8].

6.4 Threat Scenarios for Information Protection Property

Before discussing collaborations between WP6 and WP7 first we identify possible threat
scenarios.

As assets (data that should be protected) we consider data and methods of applica-
tions and security domains GP-specific methods (like encryption and decryption). Further
we will discuss how these assets can be accessed illegally.

Our attacker model is a malicious application that tries to be installed on a smart
card (or updated) in order to get access to assets of honest stakeholders. Access to
these assets is protected by security policy and correct (with respect to Java Card and
GlobalPlatform specifications) smart card implementation. For specification of threat sce-
narios we assume that a honest application A is installed on the card and is associated
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with a honest security domain SDA. Assets in our threat scenarios are data of applica-
tion A and GP-specific services of SDA. A malicious applet B (provided by a stakeholder
different from the owner of application A) tries to get an access to these assets. We do
not consider in threat scenarios applications with certain GP privileges that allow card
content management.

6.4.1 Threat Scenario 1: Illegal Access to Security Domain Services

A malicious application B tries to get access to the GP-specific services that are pro-
vided by security domain SDA by associating B with SDA directly or indirectly. It can be
achieved by the following attacks:

(a) Threat scenario 1.a (b) Threat scenario 1.b

(c) Threat scenario 1.c (d) Threat scenario 1.d

Figure 2: Threat scenario 1

Scenario 1.a

Description of scenario: Application B tries to be installed into security domain SDA.
Figure 2(a) depicts a possible files hierarchy associated to this scenario. The red slash
line represents the addition of the application to the hierarchy after the attempt.
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Scenario 1.b

Description of scenario: Application B is installed on the platform and is associated with
the security domain SDB, which belongs to an owner of application B. Then application
B tries to be extradited from SDB to SDA. Figure 2(b) depicts a possible files hierar-
chy associated to the scenario. The black arrow between blue line and red slash line
represents the extradition attempt.

Scenario 1.c

Description of scenario: Application B is installed on the platform and is associated with
the security domain SDB. Then security domain SDB tries to be associated with the
security domain SDA or one of its sub-domains. Figure 2(c) depicts a possible files
hierarchy associated to the scenario. The black arrow between blue line and red slash
line represents the extradition attempt.

Scenario 1.d

Description of scenario: Application B is installed on the platform and is associated with
the security domain SDB. B cooperates with a malicious or buggy application C that is
associated with SDA, for example, due to an agreement between the providers of SDA

and C. Application C can provide an access to its services to application B and be a
mediator in the interaction between SDA and B. For instance C can implement a service
that will receive as a parameter some data of application B and invoke a GP-specific
service of SDA with this data. Figure 2(d) depicts a possible files hierarchy associated to
the scenario. The red tube represents the communication attempt.

If one of the attacks of Scenario 1 succeeds, B obtains access to the GP services of
security domain SDA.

6.4.2 Threat scenario 2: Illicit Information Flow

A malicious application B tries to get access to application A. On Java Card, applications
from the same package can have access to any data of each other. Applications from
different packages can only have access to methods that are defined in specific interfaces
that extend Shareable. Further we discuss more precisely the threat scenarios of this
kind.

Scenario 2.a

Description of scenario: Application B tries to be installed in the package of application
A. On Java Card this can be done only if applications A and B are installed simulta-
neously, meaning the installation process is performed by the same off-card entity. If B
succeeds, it obtains full access to all data of application A. Figure 3(a) depicts a possible
files hierarchy associated to the scenario. The red slash line represents the installation
attempt.

Scenario 2.b

Description of scenario: Application B is installed into some package, which is different
from A’s package. It receives a reference to an object of application A that implements
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(a) Threat scenario 2.a (b) Threat scenario 2.b

(c) Threat scenario 2.c (d) Threat scenario 2.d

(e) Threat scenario 2.e

Figure 3: Threat scenario 2
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Shareable interface. It tries to directly invoke one of the services of application A de-
fined in this interface, and this invocation is forbidden to him by security policy of appli-
cation A. If B succeeds, it obtains access to the service. Figure 3(b) depicts a possible
files hierarchy associated to the scenario. The red tube represents the communication
attempt.

Scenario 2.c

Description of scenario: Application B is installed into some package, which is different
from A’s package. It tries to invoke a shared method of an application C, which in turn
will invoke a service of application A. If C does not have an authorization to call a service
of A, considered scenario coincides with scenario 2.b. Thus we consider the case when
C does have a permission to invoke services of A. This attack scenario also includes
the case when B starts invoking a cascade (transitively or/and in sequence) of service
calls with at the end a call to a service of application A. In this case we assume that all
direct calls in this sequence are authorized by the security policy, but the transitive call of
B to invoke service of A is forbidden. If B succeeds, it obtains access to the service of
A. Figure 3(c) depicts a possible files hierarchy associated to the scenario. The red tube
represents the communication attempt.

Scenario 2.d

Description of scenario: Application B is installed into some package, which is different
from A’s package. In cooperation with another application(s) B tries to produce some
sequences of method calls that are forbidden by the smart card platform global security
policy, which is provided by the card vendor or the card issuer. Some (sequences of)
method calls could in fact lead the system to an undesired state such as CARD LOCKED.
Forbidden (sequences of) method calls can also involve methods of applications them-
selves. For instance, we may want to allow application A to access its security domain
keys (encrypt and decrypt methods of the GP API) but avoid further (in sequence) in-
vocations of methods in other security domains through methods of shared objects and
thus avoid the leak of security domain keys. Figure 3(d) depicts a possible files hierarchy
associated to the scenario. Communications are done by usual Java Card mechanisms.

Scenario 2.e

Description of scenario: Application B is installed into some package, which is differ-
ent from A’s package and is associated to security domain SDB. B tries by a series
of method invocations to fetch some secret data from application A. Non-interference
security policy declares that all secrets sharing from SDA to SDB are forbidden by the
provider of application A. If B succeeds it obtains an illegal access to secret data of A.
Note that in this threat scenario we do not consider an attack when B tries to be associ-
ated to SDA in order to obey the non-interference policy, because this attack is covered in
the Scenario 1. Figure 3(e) depicts a possible files hierarchy associated to the scenario.
The red tube represents the communication attempt.

If one of the attacks of Scenario 2 succeeds, application B obtains an illegal access
to data of application A. Though, for example direct control flow attack 2.b is a sub-
set of transitive control flow attack 2.c or a non-interference attack is a transitive control
flow attack with a higher level of precision, we consider them separately. For details on
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benefits of each verification techniques (that protects against certain attack scenario) an
interested reader may refer to the deliverable D6.3 [11].

6.4.3 Fulfillment of Identified Threat Scenarios

On smart cards access to such assets as application data and services or security do-
main services should be implemented in accordance with specifications and security poli-
cies of the stakeholders. We have specified in the threat scenarios possible ways to ob-
tain access to these assets (under certain assumptions). We claim that the Scenarios 1
and 2 fulfill the information protection security property required by the POPS case study
(with respect to the current state of the art) assuming that:

• The Java Card implementation is correct (with respect to the specification) and
robust (against physical attacks);

• The applications are correctly identified (by its AID), successfully bytecode-verified
and do not contain native code (i.e. A, B, C are well-formed Java Card applets).

6.5 Protection against Threats

In this section we will show how WP6 and WP7 together provide protection against iden-
tified threats.

6.5.1 Protection against threat scenario 1

Scenarios 1.a, 1.b and 1.c are investigated by WP7, which provides test suites for smart
card platform implementation. These attacks can be successful in two cases: implemen-
tation of smart card platform is inconsistent with the specifications or owner of application
B has got a cryptographic key to the security domain SDA. WP7 provides tests for cor-
rectness of installation process and ensures that the application B can be associated
with the security domain SDA if and only if it has a specific cryptographic key (as an ac-
cess right token) for this security domain (correctness of association and extradition). We
assume that this may happen if and only if B belongs to the owner of SDA or the owners
of B and SDA had made a business agreement. Full description of testing methodology
is provided in D7.1, D7.2 and D7.3 [7, 6, 8].

Scenario 1.d cannot be fully covered by WP7, though it is related to the access con-
trol property. WP7 ensures that installation process is correct and application A is cor-
rectly associated with SDA. But protection against illegal access of B to services of
SDA in this threat scenario can be provided by verification methods of WP6. This can
be performed with different levels of precision. The GP-specific services of security do-
mains on Java Card level are implemented as methods of SecureChannel interface
provided by the security domain. Application A can obtain a reference to an object of
SDA that implements SecureChannel interface through a call to a GP-specific method
GPSystem.getSecureChannel(). Transitive information flow verification techniques
can capture forbidden transitive service invocations from application B to SDA. Another
possibility can be declaration of GPSystem methods calls as specific set of methods
and verification with transitive control flow techniques that there is no illegal sequence of
service invocations from B to all GPSystem methods. More precise verification can be
achieved by adapting a non-interference technique of WP6. In this case one can check
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that there is no information flow between application B and SDA. Consequently, protec-
tion from threat scenario 1.d can be implemented only by testing and verification work
packages working together.

6.5.2 Protection against Threat Scenario 2

In fact we do not consider threat scenario 2.a as important because in this case (under
assumption that Java Card implementation is correct) application B is necessarily an ap-
plet of A’s owner or the owners of applications A and B had made a business agreement.
Scenarios 2.b, 2.c, 2.d and 2.e are investigated by WP6, which provides assurance that
if some application is installed on the card (or was updated) then it will respect security
policies of all the stakeholders. Full specification of verification techniques is provided in
the deliverable D6.3 [11] and the current deliverable.

WP6 uses as important underlying assumption correctness of smart card platform im-
plementation, which is partially validated by testing in WP7. This is a particularly impor-
tant requirement for WP6, because verification work package makes certain assumptions
on the data exchange processes between applications. If implementation of Java Card or
GlobalPlatform is not correct with respect to the specification, verification process cannot
be considered trusted. Particularly, correctness of application installation process is a
very important requirement for WP6.

We make a remark here that especially scenario 2.e is tightly related to the scenarios
1.a – 1.c. Namely, WP6 relies on WP7 to ensure consistency of security domains hierar-
chy. If attack scenarios 1.a – 1.c are possible on some smart card platform due to faulty
implementation (related to application and security domain association and extradition
processes), then attack scenario 2.e is also possible no matter what verification results
are. So we may conclude that, again, only collaboration of verification and testing work
packages can provide full protection against attack scenario 2.

Full attacker model for Scenarios 1 and 2 can be provided formally. Allowed or for-
bidden access to assets can be formalized, for example, as a predicate, which can be
derived from security policies of the card and specifications. We do not construct a full
formal model and we do not prove any theorems related to this model as it is out of the
scope of the project.

6.6 Conclusion

WP6 and WP7 can explore separate verification techniques for protection against threats
of the Scenarios 1 and 2, except for the 1.d. In fact, the interest of a connection between
these two work packages is that each hypothesis proposed by one work package is tack-
led by the other. So the completeness of validation can only be achieved if the work
packages work together as proposed in the SecureChange process.
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7. Conclusion

In this deliverable we have finalized the four different models originally introduced in the
deliverable D6.3 [11] for loading-time verification of security properties related to informa-
tion protection on constrained Java-based systems.

The direct control flow model and the transitive control flow model, respectively pre-
sented in the Chapter 2 and in the Chapter 3, have the common objective to offer an
application a way to control access to its shared services. These two models follow dif-
ferent approaches and provide different features. On one hand, the direct control flow
model follows the Security-by-Contract approach and deals with inter-application func-
tionality requirements. On the other hand, the transitive control flow model is a static
verfication analysis completely done on-device, so it is well appropriate for autonomous
open systems able to load code from untrusted entities, and it is sensitive to application
collusion. All types of changes (addition/removal of application, modification of control
flow policy, modification of domains hierarchy) are now supported by both models in an
incremental way, and we have shown that this differential approach is more efficient than
complete reverification of the system while providing the same security guarantees.

The last two models are following the proof-carrying-code paradigm. The global pol-
icy model presented in the Chapter 4 aims to detect forbidden sequences of methods
calls defined at the system level. This model now supports installation of application,
removal of application and modification of domains hierarchy in an efficient incremen-
tal way with the same security guarantees as complete reanalysis of the system. The
non-interference model in the Chapter 5 aims to detect illicit flows of data between do-
mains of the system. All types of changes are now supported by this model in an efficient
incremental way with the same security guarantees as a complete re-verification of the
system.

All these techniques require integration of algorithms in the Java-based core system
itself in order to be able to reject at installation a new application that would break the
security of the system. These algorithms must also be interleaved in the bytecode loading
process of the underlying system to ensure that the verification cannot be bypassed.
Consistency of the domains hierarchy is also a crucial issue we assume to be verified in
the underlying system. This last assumption is fortunately tested on GlobalPlatform by
WP7, as described in the Chapter 6.

All on-device WP6 techniques have different level of complexity, and thus different
resources requirements. The last year effort of WP6 will consist in the development of
a proof-of-concept implementation of the presented techniques by increasing complexity
order, and the evaluation of their adequacy and applicability to SecureChange use cases
by industrial partners.
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